Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 476 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

A Framework for Large Scale Synthetic Graph Dataset Generation (2210.01944v4)

Published 4 Oct 2022 in cs.LG and cs.SI

Abstract: Recently there has been increasing interest in developing and deploying deep graph learning algorithms for many tasks, such as fraud detection and recommender systems. Albeit, there is a limited number of publicly available graph-structured datasets, most of which are tiny compared to production-sized applications or are limited in their application domain. This work tackles this shortcoming by proposing a scalable synthetic graph generation tool to scale the datasets to production-size graphs with trillions of edges and billions of nodes. The tool learns a series of parametric models from proprietary datasets that can be released to researchers to study various graph methods on the synthetic data increasing prototype development and novel applications. We demonstrate the generalizability of the framework across a series of datasets, mimicking structural and feature distributions as well as the ability to scale them across varying sizes demonstrating their usefulness for benchmarking and model development. Code can be found on https://github.com/NVIDIA/DeepLearningExamples/tree/master/Tools/DGLPyTorch/SyntheticGraphGeneration.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.