Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Information Removal at the bottleneck in Deep Neural Networks (2210.00891v1)

Published 30 Sep 2022 in cs.LG and cs.AI

Abstract: Deep learning models are nowadays broadly deployed to solve an incredibly large variety of tasks. Commonly, leveraging over the availability of "big data", deep neural networks are trained as black-boxes, minimizing an objective function at its output. This however does not allow control over the propagation of some specific features through the model, like gender or race, for solving some an uncorrelated task. This raises issues either in the privacy domain (considering the propagation of unwanted information) and of bias (considering that these features are potentially used to solve the given task). In this work we propose IRENE, a method to achieve information removal at the bottleneck of deep neural networks, which explicitly minimizes the estimated mutual information between the features to be kept ``private'' and the target. Experiments on a synthetic dataset and on CelebA validate the effectiveness of the proposed approach, and open the road towards the development of approaches guaranteeing information removal in deep neural networks.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)