Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s
GPT-5 High 22 tok/s Pro
GPT-4o 89 tok/s
GPT OSS 120B 457 tok/s Pro
Kimi K2 169 tok/s Pro
2000 character limit reached

A Kernel Measure of Dissimilarity between $M$ Distributions (2210.00634v2)

Published 2 Oct 2022 in math.ST, stat.ME, and stat.TH

Abstract: Given $M \geq 2$ distributions defined on a general measurable space, we introduce a nonparametric (kernel) measure of multi-sample dissimilarity (KMD) -- a parameter that quantifies the difference between the $M$ distributions. The population KMD, which takes values between 0 and 1, is 0 if and only if all the $M$ distributions are the same, and 1 if and only if all the distributions are mutually singular. Moreover, KMD possesses many properties commonly associated with $f$-divergences such as the data processing inequality and invariance under bijective transformations. The sample estimate of KMD, based on independent observations from the $M$ distributions, can be computed in near linear time (up to logarithmic factors) using $k$-nearest neighbor graphs (for $k \ge 1$ fixed). We develop an easily implementable test for the equality of $M$ distributions based on the sample KMD that is consistent against all alternatives where at least two distributions are not equal. We prove central limit theorems for the sample KMD, and provide a complete characterization of the asymptotic power of the test, as well as its detection threshold. The usefulness of our measure is demonstrated via real and synthetic data examples; our method is also implemented in an R package.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.