Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Branching random walk with non-local competition (2209.14653v2)

Published 29 Sep 2022 in math.PR

Abstract: We study the Bolker-Pacala-Dieckmann-Law (BPDL) model of population dynamics in the regime of large population density. The BPDL model is a particle system in which particles reproduce, move randomly in space, and compete with each other locally. We rigorously prove global survival as well as a shape theorem describing the asymptotic spread of the population, when the population density is sufficiently large. In contrast to most previous studies, we allow the competition kernel to have an arbitrary, even infinite range, whence the term non-local competition. This makes the particle system non-monotone and of infinite-range dependence, meaning that the usual comparison arguments break down and have to be replaced by a more hands-on approach. Some ideas in the proof are inspired by works on the non-local Fisher-KPP equation, but the stochasticity of the model creates new difficulties.

Summary

We haven't generated a summary for this paper yet.