Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-Equilibrium Fluctuations for a Spatial Logistic Branching Process with Weak Competition (2409.05269v1)

Published 9 Sep 2024 in math.PR

Abstract: The spatial logistic branching process is a population dynamics model in which particles move on a lattice according to independent simple symmetric random walks, each particle splits into a random number of individuals at rate one, and pairs of particles at the same location compete at rate c. We consider the weak competition regime in which c tends to zero, corresponding to a local carrying capacity tending to infinity like 1/c. We show that the hydrodynamic limit of the spatial logistic branching process is given by the Fisher-Kolmogorov-Petrovsky-Piskunov equation. We then prove that its non-equilibrium fluctuations converge to a generalised Ornstein-Uhlenbeck process with deterministic but heterogeneous coefficients. The proofs rely on an adaptation of the method of v-functions developed in Boldrighini et al. 1992. An intermediate result of independent interest shows how the tail of the offspring distribution and the precise regime in which c tends to zero affect the convergence rate of the expected population size of the spatial logistic branching process to the hydrodynamic limit.

Summary

We haven't generated a summary for this paper yet.