Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Escaping saddle points in zeroth-order optimization: the power of two-point estimators (2209.13555v3)

Published 27 Sep 2022 in math.OC

Abstract: Two-point zeroth order methods are important in many applications of zeroth-order optimization, such as robotics, wind farms, power systems, online optimization, and adversarial robustness to black-box attacks in deep neural networks, where the problem may be high-dimensional and/or time-varying. Most problems in these applications are nonconvex and contain saddle points. While existing works have shown that zeroth-order methods utilizing $\Omega(d)$ function valuations per iteration (with $d$ denoting the problem dimension) can escape saddle points efficiently, it remains an open question if zeroth-order methods based on two-point estimators can escape saddle points. In this paper, we show that by adding an appropriate isotropic perturbation at each iteration, a zeroth-order algorithm based on $2m$ (for any $1 \leq m \leq d$) function evaluations per iteration can not only find $\epsilon$-second order stationary points polynomially fast, but do so using only $\tilde{O}\left(\frac{d}{m\epsilon{2}\bar{\psi}}\right)$ function evaluations, where $\bar{\psi} \geq \tilde{\Omega}\left(\sqrt{\epsilon}\right)$ is a parameter capturing the extent to which the function of interest exhibits the strict saddle property.

Citations (6)

Summary

We haven't generated a summary for this paper yet.