Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Zeroth-order Nonconvex Stochastic Optimization: Handling Constraints, High-Dimensionality and Saddle-Points (1809.06474v2)

Published 17 Sep 2018 in math.OC, cs.DS, cs.LG, math.ST, stat.ML, and stat.TH

Abstract: In this paper, we propose and analyze zeroth-order stochastic approximation algorithms for nonconvex and convex optimization, with a focus on addressing constrained optimization, high-dimensional setting and saddle-point avoiding. To handle constrained optimization, we first propose generalizations of the conditional gradient algorithm achieving rates similar to the standard stochastic gradient algorithm using only zeroth-order information. To facilitate zeroth-order optimization in high-dimensions, we explore the advantages of structural sparsity assumptions. Specifically, (i) we highlight an implicit regularization phenomenon where the standard stochastic gradient algorithm with zeroth-order information adapts to the sparsity of the problem at hand by just varying the step-size and (ii) propose a truncated stochastic gradient algorithm with zeroth-order information, whose rate of convergence depends only poly-logarithmically on the dimensionality. We next focus on avoiding saddle-points in non-convex setting. Towards that, we interpret the Gaussian smoothing technique for estimating gradient based on zeroth-order information as an instantiation of first-order Stein's identity. Based on this, we provide a novel linear-(in dimension) time estimator of the Hessian matrix of a function using only zeroth-order information, which is based on second-order Stein's identity. We then provide an algorithm for avoiding saddle-points, which is based on a zeroth-order cubic regularization Newton's method and discuss its convergence rates.

Citations (92)

Summary

We haven't generated a summary for this paper yet.