Spontaneous symmetry emergence in a Hermitian system of coupled oscillators without symmetry (2209.12497v6)
Abstract: Spontaneous symmetry breaking in systems with symmetry is a cornerstone phenomenon accompanying second-order phase transitions. Here, we predict the opposite phenomenon, namely, spontaneous symmetry emergence in a system that lacks symmetry. In the example of two coupled oscillators interacting non-symmetrically with a set of oscillators whose frequencies uniformly fill a finite frequency range, we demonstrate that the system state can acquire symmetry that is not inherent in the system Hamiltonian. The emergence of symmetry is manifested as a change in the system dynamics, which can be interpreted as a phase transition in a Hermitian system that lacks symmetry.
- L. D. Landau and E. M. Lifshitz, Statistical Physics: Volume 5, Vol. 5 (Elsevier, 2013).
- P. W. Higgs, Broken symmetries and the masses of gauge bosons, Phys. Rev. Lett. 13, 508 (1964).
- P. W. Anderson, Concepts in Solids (Benjamin, New York, 1963) pp. 175–182.
- J. Goldstone, A. Salam, and S. Weinberg, Broken symmetries, Physical Review 127, 965 (1962).
- L. D. Landau and E. M. Lifshitz, Quantum mechanics: Non-relativistic theory, Vol. 3 (Elsevier, 2013).
- C. M. Bender and S. Boettcher, Real spectra in non-hermitian hamiltonians having p t symmetry, Phys. Rev. Lett. 80, 5243 (1998).
- N. Moiseyev, Non-Hermitian quantum mechanics (Cambridge University Press, 2011).
- S. Klaiman, U. Günther, and N. Moiseyev, Visualization of branch points in pt-symmetric waveguides, Phys. Rev. Lett. 101, 080402 (2008).
- S. Longhi, Parity-time symmetry meets photonics: A new twist in non-hermitian optics, EPL 120, 64001 (2018).
- M.-A. Miri and A. Alù, Exceptional points in optics and photonics, Science 363, eaar7709 (2019).
- J. B. Khurgin, Exceptional points in polaritonic cavities and subthreshold fabry–perot lasers, Optica 7, 1015 (2020).
- T. Gao et al., Observation of non-hermitian degeneracies in a chaotic exciton-polariton billiard, Nature 526, 554 (2015).
- J. Wiersig, Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection, Phys. Rev. Lett. 112, 203901 (2014).
- I. V. Doronin, A. A. Zyablovsky, and E. S. Andrianov, Strong-coupling-assisted formation of coherent radiation below the lasing threshold, Opt. Express 29, 5624 (2021).
- G.-Q. Zhang and J. Q. You, Higher-order exceptional point in a cavity magnonics system, Phys. Rev. B 99, 054404 (2019).
- S. Longhi, Bloch oscillations in complex crystals with p t symmetry, Phys. Rev. Lett. 103, 123601 (2009).
- M. O. Scully and M. S. Zubairy, Quantum optics (1999).
- A. O. Caldeira and A. J. Leggett, Path integral approach to quantum brownian motion, Physica A: Statistical mechanics and its Applications 121, 587 (1983).
- U. Weiss, Quantum dissipative systems (World Scientific, 2012).
- I. De Vega and D. Alonso, Dynamics of non-markovian open quantum systems, Rev. Mod. Phys. 89, 015001 (2017).
- C. Gardiner and P. Zoller, Quantum noise: a handbook of Markovian and non-Markovian quantum stochastic methods with applications to quantum optics (Springer Science & Business Media, 2004).
- C. M. Bender, S. Boettcher, and P. N. Meisinger, Pt-symmetric quantum mechanics, J. Math. Phys. 40, 2201 (1999).
- M. Jack, M. Collett, and D. Walls, Coherent quantum tunneling between two bose-einstein condensates, Phys. Rev. A 54, R4625 (1996).
- F. Trimborn, D. Witthaut, and S. Wimberger, Mean-field dynamics of a two-mode bose–einstein condensate subject to noise and dissipation, J. Phys. B 41, 171001 (2008).
- E.-M. Graefe, Stationary states of a pt symmetric two-mode bose–einstein condensate, J. Phys. A 45, 444015 (2012).
- V. V. Konotop, J. Yang, and D. A. Zezyulin, Nonlinear waves in pt-symmetric systems, Rev. Mod. Phys. 88, 035002 (2016).
- V. I. Tatarskii, Example of the description of dissipative processes in terms of reversible dynamic equations and some comments on the fluctuation-dissipation theorem, Soviet Physics Uspekhi 30, 134 (1987).
- A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization. A universal concept in nonlinear sciences (Cambridge University Press, 2001).
- J. Plemelj, Problems in the sense of Riemann and Klein (Interscience Publishers, 1964).
- V. V. Petrov, Sums of independent random variables (Springer-Verlag, New York-Heidelberg, 1976).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run paper prompts using GPT-5.