Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 28 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

Spontaneous symmetry emergence in a Hermitian system of coupled oscillators without symmetry (2209.12497v6)

Published 26 Sep 2022 in quant-ph and physics.optics

Abstract: Spontaneous symmetry breaking in systems with symmetry is a cornerstone phenomenon accompanying second-order phase transitions. Here, we predict the opposite phenomenon, namely, spontaneous symmetry emergence in a system that lacks symmetry. In the example of two coupled oscillators interacting non-symmetrically with a set of oscillators whose frequencies uniformly fill a finite frequency range, we demonstrate that the system state can acquire symmetry that is not inherent in the system Hamiltonian. The emergence of symmetry is manifested as a change in the system dynamics, which can be interpreted as a phase transition in a Hermitian system that lacks symmetry.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. L. D. Landau and E. M. Lifshitz, Statistical Physics: Volume 5, Vol. 5 (Elsevier, 2013).
  2. P. W. Higgs, Broken symmetries and the masses of gauge bosons, Phys. Rev. Lett. 13, 508 (1964).
  3. P. W. Anderson, Concepts in Solids (Benjamin, New York, 1963) pp. 175–182.
  4. J. Goldstone, A. Salam, and S. Weinberg, Broken symmetries, Physical Review 127, 965 (1962).
  5. L. D. Landau and E. M. Lifshitz, Quantum mechanics: Non-relativistic theory, Vol. 3 (Elsevier, 2013).
  6. C. M. Bender and S. Boettcher, Real spectra in non-hermitian hamiltonians having p t symmetry, Phys. Rev. Lett. 80, 5243 (1998).
  7. N. Moiseyev, Non-Hermitian quantum mechanics (Cambridge University Press, 2011).
  8. S. Klaiman, U. Günther, and N. Moiseyev, Visualization of branch points in pt-symmetric waveguides, Phys. Rev. Lett. 101, 080402 (2008).
  9. S. Longhi, Parity-time symmetry meets photonics: A new twist in non-hermitian optics, EPL 120, 64001 (2018).
  10. M.-A. Miri and A. Alù, Exceptional points in optics and photonics, Science 363, eaar7709 (2019).
  11. J. B. Khurgin, Exceptional points in polaritonic cavities and subthreshold fabry–perot lasers, Optica 7, 1015 (2020).
  12. T. Gao et al., Observation of non-hermitian degeneracies in a chaotic exciton-polariton billiard, Nature 526, 554 (2015).
  13. J. Wiersig, Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection, Phys. Rev. Lett. 112, 203901 (2014).
  14. I. V. Doronin, A. A. Zyablovsky, and E. S. Andrianov, Strong-coupling-assisted formation of coherent radiation below the lasing threshold, Opt. Express 29, 5624 (2021).
  15. G.-Q. Zhang and J. Q. You, Higher-order exceptional point in a cavity magnonics system, Phys. Rev. B 99, 054404 (2019).
  16. S. Longhi, Bloch oscillations in complex crystals with p t symmetry, Phys. Rev. Lett. 103, 123601 (2009).
  17. M. O. Scully and M. S. Zubairy, Quantum optics (1999).
  18. A. O. Caldeira and A. J. Leggett, Path integral approach to quantum brownian motion, Physica A: Statistical mechanics and its Applications 121, 587 (1983).
  19. U. Weiss, Quantum dissipative systems (World Scientific, 2012).
  20. I. De Vega and D. Alonso, Dynamics of non-markovian open quantum systems, Rev. Mod. Phys. 89, 015001 (2017).
  21. C. Gardiner and P. Zoller, Quantum noise: a handbook of Markovian and non-Markovian quantum stochastic methods with applications to quantum optics (Springer Science & Business Media, 2004).
  22. C. M. Bender, S. Boettcher, and P. N. Meisinger, Pt-symmetric quantum mechanics, J. Math. Phys. 40, 2201 (1999).
  23. M. Jack, M. Collett, and D. Walls, Coherent quantum tunneling between two bose-einstein condensates, Phys. Rev. A 54, R4625 (1996).
  24. F. Trimborn, D. Witthaut, and S. Wimberger, Mean-field dynamics of a two-mode bose–einstein condensate subject to noise and dissipation, J. Phys. B 41, 171001 (2008).
  25. E.-M. Graefe, Stationary states of a pt symmetric two-mode bose–einstein condensate, J. Phys. A 45, 444015 (2012).
  26. V. V. Konotop, J. Yang, and D. A. Zezyulin, Nonlinear waves in pt-symmetric systems, Rev. Mod. Phys. 88, 035002 (2016).
  27. V. I. Tatarskii, Example of the description of dissipative processes in terms of reversible dynamic equations and some comments on the fluctuation-dissipation theorem, Soviet Physics Uspekhi 30, 134 (1987).
  28. A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization. A universal concept in nonlinear sciences (Cambridge University Press, 2001).
  29. J. Plemelj, Problems in the sense of Riemann and Klein (Interscience Publishers, 1964).
  30. V. V. Petrov, Sums of independent random variables (Springer-Verlag, New York-Heidelberg, 1976).
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run paper prompts using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube