Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Extreme singular values of inhomogeneous sparse random rectangular matrices (2209.12271v4)

Published 25 Sep 2022 in math.PR, math.CO, math.ST, and stat.TH

Abstract: We develop a unified approach to bounding the largest and smallest singular values of an inhomogeneous random rectangular matrix, based on the non-backtracking operator and the Ihara-Bass formula for general random Hermitian matrices with a bipartite block structure. We obtain probabilistic upper (respectively, lower) bounds for the largest (respectively, smallest) singular values of a large rectangular random matrix $X$. These bounds are given in terms of the maximal and minimal $\ell_2$-norms of the rows and columns of the variance profile of $X$. The proofs involve finding probabilistic upper bounds on the spectral radius of an associated non-backtracking matrix $B$. The two-sided bounds can be applied to the centered adjacency matrix of sparse inhomogeneous Erd\H{o}s-R\'{e}nyi bipartite graphs for a wide range of sparsity, down to criticality. In particular, for Erd\H{o}s-R\'{e}nyi bipartite graphs $G(n,m,p)$ with $p=\omega(\log n)/n$, and $m/n\to y \in (0,1)$, our sharp bounds imply that there are no outliers outside the support of the Mar\v{c}enko-Pastur law almost surely. This result extends the Bai-Yin theorem to sparse rectangular random matrices.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.