Exact Coherent Structures in Fully Developed Two-Dimensional Turbulence (2209.10511v2)
Abstract: This paper reports several new classes of weakly unstable recurrent solutions of the 2+1-dimensional Euler equation on a square domain with periodic boundary conditions. These solutions have a number of remarkable properties which distinguish them from analogous solutions of the Navier-Stokes equation describing transitional flows. First of all, they come in high-dimensional continuous families. Second, solutions of different types are connected, e.g., an equilibrium can be smoothly continued to a traveling wave or a time-periodic state. Third, and most important, many of these solutions are dynamically relevant for turbulent flow at high Reynolds numbers. Specifically, we find that turbulence in numerical simulations exhibits large-scale coherent structures resembling some of our time-periodic solutions both frequently and over long temporal intervals. Such solutions are analogous to exact coherent structures originally introduced in the context of transitional flows.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.