Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SMTCE: A Social Media Text Classification Evaluation Benchmark and BERTology Models for Vietnamese (2209.10482v1)

Published 21 Sep 2022 in cs.CL

Abstract: Text classification is a typical natural language processing or computational linguistics task with various interesting applications. As the number of users on social media platforms increases, data acceleration promotes emerging studies on Social Media Text Classification (SMTC) or social media text mining on these valuable resources. In contrast to English, Vietnamese, one of the low-resource languages, is still not concentrated on and exploited thoroughly. Inspired by the success of the GLUE, we introduce the Social Media Text Classification Evaluation (SMTCE) benchmark, as a collection of datasets and models across a diverse set of SMTC tasks. With the proposed benchmark, we implement and analyze the effectiveness of a variety of multilingual BERT-based models (mBERT, XLM-R, and DistilmBERT) and monolingual BERT-based models (PhoBERT, viBERT, vELECTRA, and viBERT4news) for tasks in the SMTCE benchmark. Monolingual models outperform multilingual models and achieve state-of-the-art results on all text classification tasks. It provides an objective assessment of multilingual and monolingual BERT-based models on the benchmark, which will benefit future studies about BERTology in the Vietnamese language.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Luan Thanh Nguyen (12 papers)
  2. Kiet Van Nguyen (74 papers)
  3. Ngan Luu-Thuy Nguyen (56 papers)
Citations (7)