Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Infinite quantum signal processing (2209.10162v3)

Published 21 Sep 2022 in quant-ph, cs.NA, and math.NA

Abstract: Quantum signal processing (QSP) represents a real scalar polynomial of degree $d$ using a product of unitary matrices of size $2\times 2$, parameterized by $(d+1)$ real numbers called the phase factors. This innovative representation of polynomials has a wide range of applications in quantum computation. When the polynomial of interest is obtained by truncating an infinite polynomial series, a natural question is whether the phase factors have a well defined limit as the degree $d\to \infty$. While the phase factors are generally not unique, we find that there exists a consistent choice of parameterization so that the limit is well defined in the $\ell1$ space. This generalization of QSP, called the infinite quantum signal processing, can be used to represent a large class of non-polynomial functions. Our analysis reveals a surprising connection between the regularity of the target function and the decay properties of the phase factors. Our analysis also inspires a very simple and efficient algorithm to approximately compute the phase factors in the $\ell1$ space. The algorithm uses only double precision arithmetic operations, and provably converges when the $\ell1$ norm of the Chebyshev coefficients of the target function is upper bounded by a constant that is independent of $d$. This is also the first numerically stable algorithm for finding phase factors with provable performance guarantees in the limit $d\to \infty$.

Citations (17)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.