Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 76 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Optimal Controls for Forward-Backward Stochastic Differential Equations: Time-Inconsistency and Time-Consistent Solutions (2209.08994v1)

Published 19 Sep 2022 in math.OC and math.PR

Abstract: This paper is concerned with an optimal control problem for a forward-backward stochastic differential equation (FBSDE, for short) with a recursive cost functional determined by a backward stochastic Volterra integral equation (BSVIE, for short). It is found that such an optimal control problem is time-inconsistent in general, even if the cost functional is reduced to a classical Bolza type one as in Peng [50], Lim-Zhou [41], and Yong [74]. Therefore, instead of finding a global optimal control (which is time-inconsistent), we will look for a time-consistent and locally optimal equilibrium strategy, which can be constructed via the solution of an associated equilibrium Hamilton-Jacobi-BeLLMan (HJB, for short) equation. A verification theorem for the local optimality of the equilibrium strategy is proved by means of the generalized Feynman-Kac formula for BSVIEs and some stability estimates of the representation for parabolic partial differential equations (PDEs, for short). Under certain conditions, it is proved that the equilibrium HJB equation, which is a nonlocal PDE, admits a unique classical solution. As special cases and applications, the linear-quadratic problems, a mean-variance model, a social planner problem with heterogeneous Epstein-Zin utilities, and a Stackelberg game are briefly investigated. It turns out that our framework can cover not only the optimal control problems for FBSDEs studied in [50,41,74], and so on, but also the problems of the general discounting and some nonlinear appearance of conditional expectations for the terminal state, studied in Yong [75,77] and Bj\"{o}rk-Khapko-Murgoci [7].

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.