Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 113 tok/s
GPT OSS 120B 472 tok/s Pro
Kimi K2 214 tok/s Pro
2000 character limit reached

Introspective Learning : A Two-Stage Approach for Inference in Neural Networks (2209.08425v1)

Published 17 Sep 2022 in cs.LG, cs.AI, and cs.CV

Abstract: In this paper, we advocate for two stages in a neural network's decision making process. The first is the existing feed-forward inference framework where patterns in given data are sensed and associated with previously learned patterns. The second stage is a slower reflection stage where we ask the network to reflect on its feed-forward decision by considering and evaluating all available choices. Together, we term the two stages as introspective learning. We use gradients of trained neural networks as a measurement of this reflection. A simple three-layered Multi Layer Perceptron is used as the second stage that predicts based on all extracted gradient features. We perceptually visualize the post-hoc explanations from both stages to provide a visual grounding to introspection. For the application of recognition, we show that an introspective network is 4% more robust and 42% less prone to calibration errors when generalizing to noisy data. We also illustrate the value of introspective networks in downstream tasks that require generalizability and calibration including active learning, out-of-distribution detection, and uncertainty estimation. Finally, we ground the proposed machine introspection to human introspection for the application of image quality assessment.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube