Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 37 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 100 tok/s
GPT OSS 120B 473 tok/s Pro
Kimi K2 240 tok/s Pro
2000 character limit reached

Visual Concept Recognition and Localization via Iterative Introspection (1603.04186v2)

Published 14 Mar 2016 in cs.CV and cs.LG

Abstract: Convolutional neural networks have been shown to develop internal representations, which correspond closely to semantically meaningful objects and parts, although trained solely on class labels. Class Activation Mapping (CAM) is a recent method that makes it possible to easily highlight the image regions contributing to a network's classification decision. We build upon these two developments to enable a network to re-examine informative image regions, which we term introspection. We propose a weakly-supervised iterative scheme, which shifts its center of attention to increasingly discriminative regions as it progresses, by alternating stages of classification and introspection. We evaluate our method and show its effectiveness over a range of several datasets, where we obtain competitive or state-of-the-art results: on Stanford-40 Actions, we set a new state-of the art of 81.74%. On FGVC-Aircraft and the Stanford Dogs dataset, we show consistent improvements over baselines, some of which include significantly more supervision.

Citations (23)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.