Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 480 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

Vectorized Adjoint Sensitivity Method for Graph Convolutional Neural Ordinary Differential Equations (2209.06886v1)

Published 14 Sep 2022 in cs.LG, cs.NA, and math.NA

Abstract: This document, as the title stated, is meant to provide a vectorized implementation of adjoint dynamics calculation for Graph Convolutional Neural Ordinary Differential Equations (GCDE). The adjoint sensitivity method is the gradient approximation method for neural ODEs that replaces the back propagation. When implemented on libraries such as PyTorch or Tensorflow, the adjoint can be calculated by autograd functions without the need for a hand-derived formula. In applications such as edge computing and in memristor crossbars, however, autograds are not available, and therefore we need a vectorized derivation of adjoint dynamics to efficiently map the system on hardware. This document will go over the basics, then move on to derive the vectorized adjoint dynamics for GCDE.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)