Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 59 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

The number of rational points of a class of superelliptic curves (2209.06658v1)

Published 14 Sep 2022 in math.NT

Abstract: In this paper, we study the number of $\mathbb F_{qn}$-rational points on the affine curve $\mathcal{X}{d,a,b}$ given by the equation $$ yd=ax\text{Tr}(x)+b,$$ where $\text{Tr}$ denote the trace function from $\mathbb F{qn}$ to $\mathbb F_{q}$ and $d$ is a positive integer. In particular, we present bounds for the number of $\mathbb F_{q}$-rational points on $\mathcal{X}{d,a,b}$ and, for the cases where $d$ satisfies a natural condition, explicit formulas for the number of rational points are obtained. Particularly, a complete characterization is given for the case $d=2$. As a consequence of our results, we compute the number of elements $\alpha$ in $\mathbb F{qn}$ such that $\alpha$ and $\text{Tr}(\alpha)$ are quadratic residues in $\mathbb F_{qn}$.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.