Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stable finiteness of twisted group rings and noisy linear cellular automata (2209.06002v1)

Published 13 Sep 2022 in math.DS, cs.DC, math.RA, and nlin.CG

Abstract: For linear non-uniform cellular automata (NUCA) which are local perturbations of linear CA over a group universe $G$ and a finite-dimensional vector space alphabet $V$ over an arbitrary field $k$, we investigate their Dedekind finiteness property, also known as the direct finiteness property, i.e., left or right invertibility implies invertibility. We say that the group $G$ is $L1$-surjunctive, resp. finitely $L1$-surjunctive, if all such linear NUCA are automatically surjective whenever they are stably injective, resp. when in addition $k$ is finite. In parallel, we introduce the ring $D1(k[G])$ which is the Cartesian product $k[G] \times (k[G])[G]$ as an additive group but the multiplication is twisted in the second component. The ring $D1(k[G])$ contains naturally the group ring $k[G]$ and we obtain a dynamical characterization of its stable finiteness for every field $k$ in terms of the finite $L1$-surjunctivity of the group $G$, which holds for example when $G$ is residually finite or initially subamenable. Our results extend known results in the case of CA.

Citations (5)

Summary

We haven't generated a summary for this paper yet.