Papers
Topics
Authors
Recent
Search
2000 character limit reached

A geometric generalization of Kaplansky's direct finiteness conjecture

Published 15 Nov 2021 in math.AG, cs.DM, math.GR, and math.RA | (2111.07930v1)

Abstract: Let $G$ be a group and let $k$ be a field. Kaplansky's direct finiteness conjecture states that every one-sided unit of the group ring $k[G]$ must be a two-sided unit. In this paper, we establish a geometric direct finiteness theorem for endomorphisms of symbolic algebraic varieties. Whenever $G$ is a sofic group or more generally a surjunctive group, our result implies a generalization of Kaplansky's direct finiteness conjecture for the near ring $R(k, G)$ which is $k[X_g\colon g \in G]$ as a group and which contains naturally $k[G]$ as the subring of homogeneous polynomials of degree one. We also prove that Kaplansky's stable finiteness conjecture is a consequence of Gottschalk's Surjunctivity conjecture.

Citations (15)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.