Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hard Optimization Problems have Soft Edges (2209.04824v2)

Published 11 Sep 2022 in cond-mat.dis-nn, cond-mat.stat-mech, and cs.DS

Abstract: Finding a Maximum Clique is a classic property test from graph theory; find any one of the largest complete subgraphs in an Erd\"os-R\'enyi G(N, p) random graph. We use Maximum Clique to explore the structure of the problem as a function of N, the graph size, and K, the clique size sought. It displays a complex phase boundary, a staircase of steps at each of which 2log2 N and Kmax, the maximum size of a clique that can be found, increases by 1. Each of its boundaries has a finite width, and these widths allow local algorithms to find cliques beyond the limits defined by the study of infinite systems. We explore the performance of a number of extensions of traditional fast local algorithms, and find that much of the "hard" space remains accessible at finite N. The "hidden clique" problem embeds a clique somewhat larger than those which occur naturally in a G(N, p) random graph. Since such a clique is unique, we find that local searches which stop early, once evidence for the hidden clique is found, may outperform the best message passing or spectral algorithms.

Citations (11)

Summary

We haven't generated a summary for this paper yet.