Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finding Dense Subgraphs in G(n,1/2) (0807.5111v2)

Published 31 Jul 2008 in cs.DS

Abstract: Finding the largest clique is a notoriously hard problem, even on random graphs. It is known that the clique number of a random graph G(n,1/2) is almost surely either k or k+1, where k = 2log n - 2log(log n) - 1. However, a simple greedy algorithm finds a clique of size only (1+o(1))log n, with high probability, and finding larger cliques -- that of size even (1+ epsilon)log n -- in randomized polynomial time has been a long-standing open problem. In this paper, we study the following generalization: given a random graph G(n,1/2), find the largest subgraph with edge density at least (1-delta). We show that a simple modification of the greedy algorithm finds a subset of 2log n vertices whose induced subgraph has edge density at least 0.951, with high probability. To complement this, we show that almost surely there is no subset of 2.784log n vertices whose induced subgraph has edge density 0.951 or more.

Citations (2)

Summary

We haven't generated a summary for this paper yet.