Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Critical properties of the Anderson transition in random graphs: two-parameter scaling theory, Kosterlitz-Thouless type flow and many-body localization (2209.04337v2)

Published 9 Sep 2022 in cond-mat.dis-nn, cond-mat.stat-mech, and quant-ph

Abstract: The Anderson transition in random graphs has raised great interest, partly because of its analogy with the many-body localization (MBL) transition. Unlike the latter, many results for random graphs are now well established, in particular the existence and precise value of a critical disorder separating a localized from an ergodic delocalized phase. However, the renormalization group flow and the nature of the transition are not well understood. In turn, recent works on the MBL transition have made the remarkable prediction that the flow is of Kosterlitz-Thouless type. Here we show that the Anderson transition on graphs displays the same type of flow. Our work attests to the importance of rare branches along which wave functions have a much larger localization length $\xi_\parallel$ than the one in the transverse direction, $\xi_\perp$. Importantly, these two lengths have different critical behaviors: $\xi_\parallel$ diverges with a critical exponent $\nu_\parallel=1$, while $\xi_\perp$ reaches a finite universal value ${\xi_\perpc}$ at the transition point $W_c$. Indeed, $\xi_\perp{-1} \approx {\xi_\perpc}{-1} + \xi{-1}$, with $\xi \sim (W-W_c){-\nu_\perp}$ associated with a new critical exponent $\nu_\perp = 1/2$, where $\exp( \xi)$ controls finite-size effects. The delocalized phase inherits the strongly non-ergodic properties of the critical regime at short scales, but is ergodic at large scales, with a unique critical exponent $\nu=1/2$. This shows a very strong analogy with the MBL transition: the behavior of $\xi_\perp$ is identical to that recently predicted for the typical localization length of MBL in a phenomenological renormalization group flow. We demonstrate these important properties for a smallworld complex network model and show the universality of our results by considering different network parameters and different key observables of Anderson localization.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube