Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Neutron emission in ultraperipheral Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV (2209.04250v2)

Published 9 Sep 2022 in nucl-ex and hep-ex

Abstract: In ultraperipheral collisions (UPCs) of relativistic nuclei without overlap of nuclear densities, the two nuclei are excited by the Lorentz-contracted Coulomb fields of their collision partners. In these UPCs, the typical nuclear excitation energy is below a few tens of MeV, and a small number of nucleons are emitted in electromagnetic dissociation (EMD) of primary nuclei, in contrast to complete nuclear fragmentation in hadronic interactions. The cross sections of emission of given numbers of neutrons in UPCs of ${208}$Pb nuclei at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV were measured with the neutron zero degree calorimeters (ZDCs) of the ALICE detector at the LHC, exploiting a similar technique to that used in previous studies performed at $\sqrt{s_{\mathrm{NN}}}=2.76$ TeV. In addition, the cross sections for the exclusive emission of one, two, three, four, and five forward neutrons in the EMD, not accompanied by the emission of forward protons, and thus mostly corresponding to the production of ${207,206,205,204,203}$Pb, respectively, were measured for the first time. The predictions from the available models describe the measured cross sections well. These cross sections can be used for evaluating the impact of secondary nuclei on the LHC components, in particular, on superconducting magnets, and also provide useful input for the design of the Future Circular Collider (FCC-hh).

Definition Search Book Streamline Icon: https://streamlinehq.com
References (46)
  1. G. Roland, K. Safarik, and P. Steinberg, “Heavy-ion collisions at the LHC”, Prog. Part. Nucl. Phys. 77 (2014) 70–127.
  2. NA49 Collaboration, H. Appelshäuser et al., “Spectator nucleons in Pb + Pb collisions at 158-A-GeV”, Eur. Phys. J. A 2 (1998) 383–390.
  3. C. Scheidenberger et al., “Charge-changing interactions of ultrarelativistic Pb nuclei”, Phys. Rev. C 70 (2004) 014902.
  4. I. A. Pshenichnov, “Electromagnetic excitation and fragmentation of ultrarelativistic nuclei”, Phys. Part. Nucl. 42 (2011) 215–250.
  5. ALICE Collaboration, B. Abelev et al., “Measurement of the cross section for electromagnetic dissociation with neutron emission in Pb–Pb collisions at sN⁢Nsubscript𝑠𝑁𝑁\sqrt{s_{NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 2.76 TeV”, Phys. Rev. Lett. 109 (2012) 252302, arXiv:1203.2436 [nucl-ex].
  6. A. J. Baltz, M. J. Rhoades-Brown, and J. Weneser, “Heavy ion partial beam lifetimes due to Coulomb induced processes”, Phys. Rev. E 54 (1996) 4233–4239.
  7. R. Bruce, D. Bocian, S. Gilardoni, and J. M. Jowett, “Beam losses from ultraperipheral nuclear collisions between 208208{}^{208}start_FLOATSUPERSCRIPT 208 end_FLOATSUPERSCRIPTPb82+limit-from82{}^{82+}start_FLOATSUPERSCRIPT 82 + end_FLOATSUPERSCRIPT ions in the Large Hadron Collider and their alleviation”, Phys. Rev. ST Accel. Beams 12 (2009) 071002.
  8. P. D. Hermes, R. Bruce, J. M. Jowett, S. Redaelli, B. Salvachua Ferrando, G. Valentino, and D. Wollmann, “Measured and simulated heavy-ion beam loss patterns at the CERN Large Hadron Collider”, Nucl. Instrum. Meth. A 819 (2016) 73–83.
  9. A. S. Botvina et al., “Multifragmentation of spectators in relativistic heavy ion reactions”, Nucl. Phys. A 584 (1995) 737–756.
  10. A. Schüttauf et al., “Universality of spectator fragmentation at relativistic bombarding energies”, Nucl. Phys. A 607 (1996) 457–486, arXiv:nucl-ex/9606001.
  11. P. Deines-Jones et al., “Charged particle production in the Pb + Pb system at 158 GeV/c per nucleon”, Phys. Rev. C 62 (2000) 014903, arXiv:hep-ex/9912008.
  12. S. Cecchini, G. Giacomelli, M. Giorgini, G. Mandrioli, L. Patrizii, V. Popa, P. Serra, G. Sirri, and M. Spurio, “Fragmentation cross-sections of 158A GeV Pb ions in various targets measured with CR39 nuclear track detectors”, Nucl. Phys. A 707 (2002) 513–524, arXiv:hep-ex/0201039.
  13. U. Uggerhøj, I. A. Pshenichnov, C. Scheidenberger, H. D. Hansen, H. Knudsen, E. Uggerhøj, P. Sona, A. Mangiarotti, and S. Ballestrero, “Charge-changing interactions of ultrarelativistic In nuclei”, Phys. Rev. C 72 (2005) 057901.
  14. S. Tarafdar, Z. Citron, and A. Milov, “A Centrality Detector Concept”, Nucl. Instrum. Meth. A 768 (2014) 170–178, arXiv:1405.4555 [nucl-ex].
  15. AFP Collaboration, S. Grinstein, “The ATLAS Forward Proton Detector (AFP)”, Nucl. Part. Phys. Proc. 273-275 (2016) 1180–1184.
  16. G. Puddu et al., “The zero degree calorimeters for the ALICE experiment”, Nucl. Instrum. Meth. Phys. Res. Sect. A 581 (2007) 397–401.
  17. R. Gemme et al., “Commissioning and calibration of the zero degree calorimeters for the ALICE experiment”, Nucl. Phys. B Proc. Suppl. 197 (2009) 211–214.
  18. C. Oppedisano et al., “Physics performance of the ALICE zero degree calorimeter”, Nucl. Phys. B Proc. Suppl. 197 (2009) 206–210.
  19. I. A. Pshenichnov, I. N. Mishustin, J. P. Bondorf, A. S. Botvina, and A. S. Ilinov, “Particle emission following Coulomb excitation in ultrarelativistic heavy ion collisions”, Phys. Rev. C 60 (1999) 044901, arXiv:nucl-th/9901061.
  20. I. A. Pshenichnov, J. P. Bondorf, I. N. Mishustin, A. Ventura, and S. Masetti, “Mutual heavy ion dissociation in peripheral collisions at ultrarelativistic energies”, Phys. Rev. C 64 (2001) 024903, arXiv:nucl-th/0101035.
  21. H. H. Braun, A. Fassò, A. Ferrari, J. M. Jowett, P. R. Sala, and G. I. Smirnov, “Hadronic and electromagnetic fragmentation of ultrarelativistic heavy ions at LHC”, Phys. Rev. ST Accel. Beams 17 (2014) 021006.
  22. M. Kłusek-Gawenda, M. Ciemała, W. Schäfer, and A. Szczurek, “Electromagnetic excitation of nuclei and neutron evaporation in ultrarelativistic ultraperipheral heavy ion collisions”, Phys. Rev. C 89 (2014) 054907, arXiv:1311.1938 [nucl-th].
  23. M. Broz, J. G. Contreras, and J. D. Tapia Takaki, “A generator of forward neutrons for ultra-peripheral collisions: nOO⁢nsubscriptsuperscriptnOOn\mathrm{n^{O}_{O}n}roman_n start_POSTSUPERSCRIPT roman_O end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_O end_POSTSUBSCRIPT roman_n”, Comput. Phys. Commun. 253 (2020) 107181, arXiv:1908.08263 [nucl-th].
  24. ALICE Collaboration, K. Aamodt et al., “The ALICE experiment at the CERN LHC”, JINST 3 (2008) S08002.
  25. S. van der Meer, “Calibration of the effective beam height in the ISR”, tech. rep., CERN, Geneva, 1968. https://cds.cern.ch/record/296752.
  26. ALICE Collaboration, S. Acharya, D. Adamová, A. Adler, J. Adolfsson, et al., “ALICE luminosity determination for Pb−--Pb collisions at sNN=5.02subscript𝑠NN5.02\sqrt{s_{\mathrm{NN}}}=5.02square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV”, arXiv:2204.10148 [nucl-ex].
  27. A. O. Svetlichnyi and I. A. Pshenichnov, “Formation of Free and Bound Spectator Nucleons in Hadronic Interactions between Relativistic Nuclei”, Bull. Russ. Acad. Sci. Phys. 84 (2020) 911–916.
  28. D. Casadei, “Estimating the selection efficiency”, JINST 7 (2012) P08021, arXiv:0908.0130 [physics.data-an].
  29. A. J. Baltz, Y. Gorbunov, S. R. Klein, and J. Nystrand, “Two-photon interactions with nuclear breakup in relativistic heavy ion collisions”, Phys. Rev. C 80 (2009) 044902, arXiv:0907.1214 [nucl-ex].
  30. S. R. Klein, J. Nystrand, J. Seger, Y. Gorbunov, and J. Butterworth, “STARlight: A Monte Carlo simulation program for ultra-peripheral collisions of relativistic ions”, Comput. Phys. Commun. 212 (2017) 258–268, arXiv:1607.03838 [hep-ph].
  31. U. Dmitrieva and I. Pshenichnov, “On the performance of Zero Degree Calorimeters in detecting multinucleon events”, Nucl. Instrum. Meth. A 906 (2018) 114–119, arXiv:1805.01792 [physics.ins-det].
  32. M. B. Golubeva et al., “Neutron emission in electromagnetic dissociation of ultrarelativistic Pb ions”, Phys. Rev. C 71 (2005) 024905.
  33. I. A. Pshenichnov, B. L. Berman, W. J. Briscoe, C. Cetina, G. Feldman, P. Heimberg, A. S. Iljinov, and I. I. Strakovsky, “Intranuclear-cascade model calculation of photofission probabilities for actinide nuclei”, Eur. Phys. J. A 24 (2005) 69–84, arXiv:nucl-th/0303070.
  34. I. A. Pshenichnov and S. A. Gunin, “Electromagnetic interactions of nuclei at the FCC-hh collider”, Phys. Part. Nucl. 50 (2019) 501–505.
  35. V. Muccifora et al., “Photoabsorption on nuclei in the shadowing threshold region”, Phys. Rev. C 60 (1999) 064616, arXiv:nucl-ex/9810015.
  36. C. Scheidenberger et al., “Electromagnetically induced nuclear-charge pickup observed in ultrarelativistic Pb collisions”, Phys. Rev. Lett. 88 (2002) 042301.
  37. J. O. Adler, G. Andersson, and H. A. Gustafsson, “Alpha particles from 197197{}^{197}start_FLOATSUPERSCRIPT 197 end_FLOATSUPERSCRIPTAu irradiated by 500 MeV bremsstrahlung”, Nucl. Phys. A 223 (1974) 145–156.
  38. J. P. Bondorf, A. S. Botvina, A. S. Ilinov, I. N. Mishustin, and K. Sneppen, “Statistical multifragmentation of nuclei”, Phys. Rept. 257 (1995) 133–221.
  39. V. V. Varlamov, A. I. Davydov, and V. N. Orlin, “New evaluated data on 206,207,208206207208{}^{206,207,208}start_FLOATSUPERSCRIPT 206 , 207 , 208 end_FLOATSUPERSCRIPTPb photodisintegration”, Eur. Phys. J. A 57 (2021) 287.
  40. B. Alessandro et al., “Fission cross sections of lead projectiles in Pb nucleus interactions at 40 and 158 GeV/c per nucleon”, Phys. Rev. C 69 (2004) 034904.
  41. NA50 Collaboration, M. C. Abreu et al., “Observation of fission in Pb–Pb interactions at 158A GeV”, Phys. Rev. C 59 (1999) 876–883.
  42. V. Guzey, M. Strikman, and M. Zhalov, “Disentangling coherent and incoherent quasielastic J/ψ𝐽𝜓J/\psiitalic_J / italic_ψ photoproduction on nuclei by neutron tagging in ultraperipheral ion collisions at the LHC”, Eur. Phys. J. C 74 (2014) 2942, arXiv:1312.6486 [hep-ph].
  43. Z. Citron et al., “Report from Working Group 5: Future physics opportunities for high-density QCD at the LHC with heavy-ion and proton beams”, CERN Yellow Rep. Monogr. 7 (2019) 1159–1410, arXiv:1812.06772 [hep-ph].
  44. S. R. Klein, “Localized beam pipe heating due to e−superscripte\mathrm{e}^{-}roman_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT capture and nuclear excitation in heavy ion colliders”, Nucl. Instrum. Meth. A 459 (2001) 51–57, arXiv:physics/0005032.
  45. M. Schaumann, J. M. Jowett, C. Bahamonde Castro, R. Bruce, A. Lechner, and T. Mertens, “Bound-free pair production from nuclear collisions and the steady-state quench limit of the main dipole magnets of the CERN Large Hadron Collider”, Phys. Rev. Accel. Beams 23 (2020) 121003, arXiv:2008.05312 [physics.acc-ph].
  46. M. Schaumann, “Potential performance for Pb-Pb, p-Pb and p-p collisions in a future circular collider”, Phys. Rev. ST Accel. Beams 18 (2015) 091002, arXiv:1503.09107 [physics.acc-ph].
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)