Sharp stability of the logarithmic Sobolev inequality in the critical point setting (2209.04118v2)
Abstract: In this paper, we consider the Euclidean logarithmic Sobolev inequality \begin{eqnarray*} \int_{\mathbb{R}d}|u|2\log|u|dx\leq\frac{d}{4}\log\bigg(\frac{2}{\pi d e}|\nabla u|{L2(\mathbb{R}d)}2\bigg), \end{eqnarray*} where $u\in W{1,2}(\mathbb{R}d)$ with $d\geq2$ and $|u|{L2(\mathbb{R}d)}=1$. It is well known that extremal functions of this inequality are precisely the Gaussians \begin{eqnarray*} \mathfrak{g}{\sigma,z}(x)=(\pi\sigma){-\frac{d}{2}}\mathfrak{g}{}\bigg(\sqrt{\frac{\sigma}{2}}(x-z)\bigg)\quad\text{with}\quad \mathfrak{g}_{}(x)=e{-\frac{|x|2}{2}}. \end{eqnarray*} We prove that if $u\geq0$ satisfying $(\nu-\frac12)c_0<|u|{H1(\mathbb{R}d)}2<(\nu+\frac12)c_0$ and $|-\Delta u+u-2u\log |u||{H{-1}}\leq\delta$, where $c_0=|\mathfrak{g}{1,0}|{H1(\mathbb{R}d)}2$, $\nu\in \mathbb{N}$ and $\delta>0$ sufficiently small, then \begin{eqnarray*} \text{dist}{H1}(u, \mathcal{M}\nu)\lesssim|-\Delta u+u-2u\log |u||{H{-1}} \end{eqnarray*} which is optimal in the sense that the order of the right hand side is sharp, where \begin{eqnarray*} \mathcal{M}\nu={(\mathfrak{g}_{1,0}(\cdot-z_1), \mathfrak{g}{1,0}(\cdot-z_2), \cdots, \mathfrak{g}{1,0}(\cdot-z_\nu))\mid z_i\in\bbrd}. \end{eqnarray*} Our result provides an optimal stability of the Euclidean logarithmic Sobolev inequality in the critical point setting.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.