Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

An Analysis of Deep Reinforcement Learning Agents for Text-based Games (2209.04105v2)

Published 9 Sep 2022 in cs.CL

Abstract: Text-based games(TBG) are complex environments which allow users or computer agents to make textual interactions and achieve game goals.In TBG agent design and training process, balancing the efficiency and performance of the agent models is a major challenge. Finding TBG agent deep learning modules' performance in standardized environments, and testing their performance among different evaluation types is also important for TBG agent research. We constructed a standardized TBG agent with no hand-crafted rules, formally categorized TBG evaluation types, and analyzed selected methods in our environment.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.