Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rethinking Symmetric Matrix Factorization: A More General and Better Clustering Perspective (2209.02528v3)

Published 6 Sep 2022 in cs.LG and cs.AI

Abstract: Nonnegative matrix factorization (NMF) is widely used for clustering with strong interpretability. Among general NMF problems, symmetric NMF is a special one that plays an important role in graph clustering where each element measures the similarity between data points. Most existing symmetric NMF algorithms require factor matrices to be nonnegative, and only focus on minimizing the gap between similarity matrix and its approximation for clustering, without giving a consideration to other potential regularization terms which can yield better clustering. In this paper, we explore factorizing a symmetric matrix that does not have to be nonnegative, presenting an efficient factorization algorithm with a regularization term to boost the clustering performance. Moreover, a more general framework is proposed to solve symmetric matrix factorization problems with different constraints on the factor matrices.

Citations (2)

Summary

We haven't generated a summary for this paper yet.