Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Clustering and Latent Semantic Indexing Aspects of the Nonnegative Matrix Factorization (1112.4020v1)

Published 17 Dec 2011 in cs.LG

Abstract: This paper provides a theoretical support for clustering aspect of the nonnegative matrix factorization (NMF). By utilizing the Karush-Kuhn-Tucker optimality conditions, we show that NMF objective is equivalent to graph clustering objective, so clustering aspect of the NMF has a solid justification. Different from previous approaches which usually discard the nonnegativity constraints, our approach guarantees the stationary point being used in deriving the equivalence is located on the feasible region in the nonnegative orthant. Additionally, since clustering capability of a matrix decomposition technique can sometimes imply its latent semantic indexing (LSI) aspect, we will also evaluate LSI aspect of the NMF by showing its capability in solving the synonymy and polysemy problems in synthetic datasets. And more extensive evaluation will be conducted by comparing LSI performances of the NMF and the singular value decomposition (SVD), the standard LSI method, using some standard datasets.

Citations (4)

Summary

We haven't generated a summary for this paper yet.