Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Optimal design of photonic nanojets under uncertainty (2209.02454v1)

Published 6 Sep 2022 in cs.CE, math.OC, and physics.comp-ph

Abstract: Photonic nanojets (PNJs) have promising applications as optical probes in super-resolution optical microscopy, Raman microscopy, as well as fluorescence microscopy. In this work, we consider optimal design of PNJs using a heterogeneous lens refractive index with a fixed lens geometry and uniform plane wave illumination. In particular, we consider the presence of manufacturing error of heterogeneous lens, and propose a computational framework of Optimization Under Uncertainty (OUU) for robust optimal design of PNJ. We formulate a risk-averse stochastic optimization problem with the objective to minimize both the mean and the variance of a target function, which is constrained by the Helmholtz equation that governs the 2D transverse electric (2D TE) electromagnetic field in a neighborhood of the lens. The design variable is taken as a spatially-varying field variable, where we use a finite element method for its discretization, impose a total variation penalty to promote its sparsity, and employ an adjoint-based BFGS method to solve the resulting high-dimensional optimization problem. We demonstrate that our proposed OUU computational framework can achieve more robust optimal design than a deterministic optimization scheme to significantly mitigate the impact of manufacturing uncertainty.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.