Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Trimmed Sampling Algorithm for the Noisy Generalized Eigenvalue Problem (2209.02083v2)

Published 5 Sep 2022 in nucl-th, cond-mat.quant-gas, hep-lat, and quant-ph

Abstract: Solving the generalized eigenvalue problem is a useful method for finding energy eigenstates of large quantum systems. It uses projection onto a set of basis states which are typically not orthogonal. One needs to invert a matrix whose entries are inner products of the basis states, and the process is unfortunately susceptible to even small errors. The problem is especially bad when matrix elements are evaluated using stochastic methods and have significant error bars. In this work, we introduce the trimmed sampling algorithm in order to solve this problem. Using the framework of Bayesian inference, we sample prior probability distributions determined by uncertainty estimates of the various matrix elements and likelihood functions composed of physics-informed constraints. The result is a probability distribution for the eigenvectors and observables which automatically comes with a reliable estimate of the error and performs far better than standard regularization methods. The method should have immediate use for a wide range of applications involving classical and quantum computing calculations of large quantum systems.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)