Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Entropy-regularized Wasserstein distributionally robust shape and topology optimization (2209.01500v2)

Published 3 Sep 2022 in math.OC, cs.NA, and math.NA

Abstract: This brief note aims to introduce the recent paradigm of distributional robustness in the field of shape and topology optimization. Acknowledging that the probability law of uncertain physical data is rarely known beyond a rough approximation constructed from observed samples, we optimize the worst-case value of the expected cost of a design when the probability law of the uncertainty is close'' to the estimated one up to a prescribed threshold. Theproximity'' between probability laws is quantified by the Wasserstein distance, a notion pertaining to optimal transport theory. The combination of the classical entropic regularization technique in this field with recent results from convex duality theory allows to reformulate the distributionally robust optimization problem in a way which is tractable for computations. Two numerical examples are presented, in the different settings of density-based topology optimization and geometric shape optimization. They exemplify the relevance and applicability of the proposed formulation regardless of the selected optimal design framework.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.