Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Glass Ceiling of Automatic Evaluation in Natural Language Generation (2208.14585v2)

Published 31 Aug 2022 in cs.CL

Abstract: Automatic evaluation metrics capable of replacing human judgments are critical to allowing fast development of new methods. Thus, numerous research efforts have focused on crafting such metrics. In this work, we take a step back and analyze recent progress by comparing the body of existing automatic metrics and human metrics altogether. As metrics are used based on how they rank systems, we compare metrics in the space of system rankings. Our extensive statistical analysis reveals surprising findings: automatic metrics -- old and new -- are much more similar to each other than to humans. Automatic metrics are not complementary and rank systems similarly. Strikingly, human metrics predict each other much better than the combination of all automatic metrics used to predict a human metric. It is surprising because human metrics are often designed to be independent, to capture different aspects of quality, e.g. content fidelity or readability. We provide a discussion of these findings and recommendations for future work in the field of evaluation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Pierre Colombo (48 papers)
  2. Maxime Peyrard (33 papers)
  3. Nathan Noiry (19 papers)
  4. Robert West (154 papers)
  5. Pablo Piantanida (129 papers)
Citations (8)