Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Recognizing DAGs with Page-Number 2 is NP-complete (2208.13615v3)

Published 29 Aug 2022 in cs.CG and cs.DS

Abstract: The page-number of a directed acyclic graph (a DAG, for short) is the minimum $k$ for which the DAG has a topological order and a $k$-coloring of its edges such that no two edges of the same color cross, i.e., have alternating endpoints along the topological order. In 1999, Heath and Pemmaraju conjectured that the recognition of DAGs with page-number $2$ is NP-complete and proved that recognizing DAGs with page-number $6$ is NP-complete [SIAM J. Computing, 1999]. Binucci et al. recently strengthened this result by proving that recognizing DAGs with page-number $k$ is NP-complete, for every $k\geq 3$ [SoCG 2019]. In this paper, we finally resolve Heath and Pemmaraju's conjecture in the affirmative. In particular, our NP-completeness result holds even for $st$-planar graphs and planar posets.

Citations (6)

Summary

We haven't generated a summary for this paper yet.