On a Bernstein inequality for eigenfunctions (2208.10541v2)
Abstract: Let $\varphi_{\lambda}$ be an eigenfunction of the Laplace-Beltrami operator on a smooth compact Riemannian manifold $(M,g)$, i.e., $\Delta_g \varphi_{\lambda} + \lambda \varphi_{\lambda}=0$. We show that $\varphi_{\lambda}$ satisfies a local Bernstein inequality, namely for any geodesic ball $B_g(x,r)$ in $M$ there holds: $\sup_{B_g(x,r)}|\nabla\varphi_{\lambda}|\leq C_{\delta}\max\left{\frac{\sqrt{\lambda}\log{2+\delta}\lambda}{r},\lambda\log{2+\delta}\lambda\right}\sup_{B_g(x,r)}|\varphi_{\lambda}|$. We also prove analogous inequalities for solutions of elliptic PDEs in terms of the frequency function.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.