String Condensations in 3+1D and Lagrangian Algebras (2208.07865v2)
Abstract: We present three Lagrangian algebras in the modular 2-category associated to the 3+1D $\mathbb{Z}_2$ topological order and discuss their physical interpretations, connecting algebras with gapped boundary conditions, and interestingly, maps (braided autoequivalences) exchanging algebras with bulk domain walls. A Lagrangian algebra, together with its modules and local modules, encapsulates detailed physical data of strings condensing at a gapped boundary. In particular, the condensed strings can terminate at boundaries in non-trivial ways. This phenomenon has no lower dimensional analogue and corresponds to novel mathematical structures associated to higher algebras. We provide a layered construction and also explicit lattice realizations of these boundaries and illustrate the correspondence between physics and mathematics of these boundary conditions. This is a first detailed study of the mathematics of Lagrangian algebras in modular 2-categories and their corresponding physics, that brings together rich phenomena of string condensations, gapped boundaries and domain walls in 3+1D topological orders.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.