Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

Projection-Free Non-Smooth Convex Programming (2208.05127v3)

Published 10 Aug 2022 in math.OC

Abstract: In this paper, we provide a sub-gradient based algorithm to solve general constrained convex optimization without taking projections onto the domain set. The well studied Frank-Wolfe type algorithms also avoid projections. However, they are only designed to handle smooth objective functions. The proposed algorithm treats both smooth and non-smooth problems and achieves an $O(1/\sqrt{T})$ convergence rate (which matches existing lower bounds). The algorithm yields similar performance in expectation when the deterministic sub-gradients are replaced by stochastic sub-gradients. Thus, the proposed algorithm is a projection-free alternative to the Projected sub-Gradient Descent (PGD) and Stochastic projected sub-Gradient Descent (SGD) algorithms.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.