Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 209 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Multiple orthogonal polynomials associated with branched continued fractions for ratios of hypergeometric series (2208.03539v2)

Published 6 Aug 2022 in math.CA and math.CO

Abstract: The main objects of the investigation presented in this paper are branched-continued-fraction representations of ratios of contiguous hypergeometric series and type II multiple orthogonal polynomials on the step-line with respect to linear functionals or measures whose moments are ratios of products of Pochhammer symbols. This is an interesting case study of the recently found connection between multiple orthogonal polynomials and branched continued fractions that gives a clear example of how this connection leads to considerable advances on both topics. We obtain new results about generating polynomials of lattice paths and total positivity of matrices and give new contributions to the general theory of the connection between multiple orthogonal polynomials and branched continued fractions. We construct new branched continued fractions for ratios of contiguous hypergeometric series. We give conditions for positivity of the coefficients of these branched continued fractions and we show that the ratios of products of Pochhammer symbols are generating polynomials of lattice paths for a special case of the same branched continued fractions. We introduce a family of type II multiple orthogonal polynomials on the step-line associated with those branched continued fractions. We present a formula as terminating hypergeometric series for these polynomials, we study their differential properties, and we explicitly find their recurrence relation coefficients. Finally, we focus the analysis of the multiple orthogonal polynomials to the cases where the corresponding branched-continued-fraction coefficients are all positive. In those cases, the orthogonality conditions can be written using measures on the positive real line involving Meijer G-functions and we obtain results about the location of the zeros and the asymptotic behaviour of the polynomials.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)