Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Numerical-relativity surrogate modeling with nearly extremal black-hole spins (2208.02927v1)

Published 4 Aug 2022 in gr-qc

Abstract: Numerical relativity (NR) simulations of binary black hole (BBH) systems provide the most accurate gravitational wave predictions, but at a high computational cost -- especially when the black holes have nearly extremal spins (i.e. spins near the theoretical upper limit) or very unequal masses. Recently, the technique of Reduced Order Modeling (ROM) has enabled the construction of surrogate models trained on an existing set of NR waveforms. Surrogate models enable the rapid computation of the gravitational waves emitted by BBHs. Typically these models are used for interpolation to compute gravitational waveforms for BBHs with mass ratios and spins within the bounds of the training set. Because simulations with nearly extremal spins are so technically challenging, surrogate models almost always rely on training sets with only moderate spins. In this paper, we explore how well surrogate models can extrapolate to nearly extremal spins when the training set only includes moderate spins. For simplicity, we focus on one-dimensional surrogate models trained on NR simulations of BBHs with equal masses and equal, aligned spins. We assess the performance of the surrogate models at higher spin magnitudes by calculating the mismatches between extrapolated surrogate model waveforms and NR waveforms, by calculating the differences between extrapolated and NR measurements of the remnant black-hole mass, and by testing how the surrogate model improves as the training set extends to higher spins. We find that while extrapolation in this one-dimensional case is viable for current detector sensitivities, surrogate models for next-generation detectors should use training sets that extend to nearly extremal spins.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube