Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parallel block preconditioners for virtual element discretizations of the time-dependent Maxwell equations (2208.02776v1)

Published 4 Aug 2022 in math.NA and cs.NA

Abstract: The focus of this study is the construction and numerical validation of parallel block preconditioners for low order virtual element discretizations of the three-dimensional Maxwell equations. The virtual element method (VEM) is a recent technology for the numerical approximation of partial differential equations (PDEs), that generalizes finite elements to polytopal computational grids. So far, VEM has been extended to several problems described by PDEs, and recently also to the time-dependent Maxwell equations. When the time discretization of PDEs is performed implicitly, at each time-step a large-scale and ill-conditioned linear system must be solved, that, in case of Maxwell equations, is particularly challenging, because of the presence of both H(div) and H(curl) discretization spaces. We propose here a parallel preconditioner, that exploits the Schur complement block factorization of the linear system matrix and consists of a Jacobi preconditioner for the H(div) block and an auxiliary space preconditioner for the H(curl) block. Several parallel numerical tests have been perfomed to study the robustness of the solver with respect to mesh refinement, shape of polyhedral elements, time step size and the VEM stabilization parameter.

Citations (1)

Summary

We haven't generated a summary for this paper yet.