Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

BDDC preconditioners for divergence free virtual element discretizations of the Stokes equations (2207.01361v1)

Published 4 Jul 2022 in math.NA and cs.NA

Abstract: The Virtual Element Method (VEM) is a new family of numerical methods for the approximation of partial differential equations, where the geometry of the polytopal mesh elements can be very general. The aim of this article is to extend the balancing domain decomposition by constraints (BDDC) preconditioner to the solution of the saddle-point linear system arising from a VEM discretization of the two-dimensional Stokes equations. Under suitable hypotesis on the choice of the primal unknowns, the preconditioned linear system results symmetric and positive definite, thus the preconditioned conjugate gradient method can be used for its solution. We provide a theoretical convergence analysis estimating the condition number of the preconditioned linear system. Several numerical experiments validate the theoretical estimates, showing the scalability and quasi-optimality of the method proposed. Moreover, the solver exhibits a robust behavior with respect to the shape of the polygonal mesh elements. We also show that a faster convergence could be achieved with an easy to implement coarse space, slightly larger than the minimal one covered by the theory.

Citations (5)

Summary

We haven't generated a summary for this paper yet.