Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scalable Video Coding for Humans and Machines (2208.02512v1)

Published 4 Aug 2022 in eess.IV and cs.CV

Abstract: Video content is watched not only by humans, but increasingly also by machines. For example, machine learning models analyze surveillance video for security and traffic monitoring, search through YouTube videos for inappropriate content, and so on. In this paper, we propose a scalable video coding framework that supports machine vision (specifically, object detection) through its base layer bitstream and human vision via its enhancement layer bitstream. The proposed framework includes components from both conventional and Deep Neural Network (DNN)-based video coding. The results show that on object detection, the proposed framework achieves 13-19% bit savings compared to state-of-the-art video codecs, while remaining competitive in terms of MS-SSIM on the human vision task.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Hyomin Choi (20 papers)
  2. Ivan V. Bajić (44 papers)
Citations (12)

Summary

We haven't generated a summary for this paper yet.