Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Task Oriented Video Coding: A Survey (2208.07313v3)

Published 15 Aug 2022 in eess.IV and cs.CV

Abstract: Video coding technology has been continuously improved for higher compression ratio with higher resolution. However, the state-of-the-art video coding standards, such as H.265/HEVC and Versatile Video Coding, are still designed with the assumption the compressed video will be watched by humans. With the tremendous advance and maturation of deep neural networks in solving computer vision tasks, more and more videos are directly analyzed by deep neural networks without humans' involvement. Such a conventional design for video coding standard is not optimal when the compressed video is used by computer vision applications. While the human visual system is consistently sensitive to the content with high contrast, the impact of pixels on computer vision algorithms is driven by specific computer vision tasks. In this paper, we explore and summarize recent progress on computer vision task oriented video coding and emerging video coding standard, Video Coding for Machines.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Daniel Wood (9 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.