Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Stochastic interpolation of sparsely sampled time series by a superstatistical random process and its synthesis in Fourier and wavelet space (2208.01486v1)

Published 2 Aug 2022 in physics.data-an, physics.comp-ph, and physics.flu-dyn

Abstract: We present a novel method for stochastic interpolation of sparsely sampled time signals based on a superstatistical random process generated from a multivariate Gaussian scale mixture. In comparison to other stochastic interpolation methods such as Gaussian process regression, our method possesses strong multifractal properties and is thus applicable to a broad range of real-world time series, e.g. from solar wind or atmospheric turbulence. Furthermore, we provide a sampling algorithm in terms of a mixing procedure that consists of generating a 1 + 1-dimensional field u(t, {\xi}), where each Gaussian component u{\xi}(t) is synthesized with identical underlying noise but different covariance function C{\xi}(t,s) parameterized by a log-normally distributed parameter {\xi}. Due to the Gaussianity of each component u{\xi}(t), we can exploit standard sampling alogrithms such as Fourier or wavelet methods and, most importantly, methods to constrain the process on the sparse measurement points. The scale mixture u(t) is then initialized by assigning each point in time t a {\xi}(t) and therefore a specific value from u(t, {\xi}), where the time-dependent parameter {\xi}(t) follows a log-normal process with a large correlation time scale compared to the correlation time of u(t, {\xi}). We juxtapose Fourier and wavelet methods and show that a multiwavelet-based hierarchical approximation of the interpolating paths, which produce a sparse covariance structure, provide an adequate method to locally interpolate large and sparse datasets.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube