Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Real Time Object Detection System with YOLO and CNN Models: A Review (2208.00773v1)

Published 23 Jul 2022 in cs.CV and eess.IV

Abstract: The field of artificial intelligence is built on object detection techniques. YOU ONLY LOOK ONCE (YOLO) algorithm and it's more evolved versions are briefly described in this research survey. This survey is all about YOLO and convolution neural networks (CNN)in the direction of real time object detection.YOLO does generalized object representation more effectively without precision losses than other object detection models.CNN architecture models have the ability to eliminate highlights and identify objects in any given image. When implemented appropriately, CNN models can address issues like deformity diagnosis, creating educational or instructive application, etc. This article reached atnumber of observations and perspective findings through the analysis.Also it provides support for the focused visual information and feature extraction in the financial and other industries, highlights the method of target detection and feature selection, and briefly describe the development process of YOLO algorithm.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Viswanatha V (5 papers)
  2. Chandana R K (1 paper)
  3. Ramachandra A. C. (1 paper)
Citations (47)