Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Cohomology, deformations and extensions of Rota-Baxter Leibniz algebras (2208.00560v3)

Published 1 Aug 2022 in math.RA and math.RT

Abstract: A Rota-Baxter Leibniz algebra is a Leibniz algebra $(\mathfrak{g},[~,~]_{\mathfrak{g}})$ equipped with a Rota-Baxter operator $T : \mathfrak{g} \rightarrow \mathfrak{g}$. We define representation and dual representation of Rota-Baxter Leibniz algebras. Next, we define a cohomology theory of Rota-Baxter Leibniz algebras. We also study the infinitesimal and formal deformation theory of Rota-Baxter Leibniz algebras and show that our cohomology is deformation cohomology. Moreover, We define an abelian extension of Rota-Baxter Leibniz algebras and show that equivalence classes of such extensions are related to the cohomology groups.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.