Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4 33 tok/s Pro
2000 character limit reached

On restricted projections to planes in $\mathbb{R}^3$ (2207.13844v2)

Published 28 Jul 2022 in math.CA and math.MG

Abstract: Let $\gamma:[0,1]\rightarrow \mathbb{S}{2}$ be a non-degenerate curve in $\mathbb{R}3$, that is to say, $\det\big(\gamma(\theta),\gamma'(\theta),\gamma"(\theta)\big)\neq 0$. For each $\theta\in[0,1]$, let $V_\theta=\gamma(\theta)\perp$ and let $\pi_\theta:\mathbb{R}3\rightarrow V_\theta$ be the orthogonal projections. We prove that if $A\subset \mathbb{R}3$ is a Borel set, then for a.e. $\theta\in [0,1]$ we have $\text{dim}(\pi_\theta(A))=\min{2,\text{dim} A}$. More generally, we prove an exceptional set estimate. For $A\subset\mathbb{R}3$ and $0\le s\le 2$, define $E_s(A):={\theta\in[0,1]: \text{dim}(\pi_\theta(A))<s\}$. We have $\text{dim}(E_s(A))\le 1+s-\text{dim}(A)$. We also prove that if $\text{dim}(A)\>2$, then for a.e. $\theta\in[0,1]$ we have $\mathcal{H}2(\pi_\theta (A))>0$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. J. Bourgain and C. Demeter. The proof of the ℓ2superscriptℓ2\ell^{2}roman_ℓ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT decoupling conjecture. Ann. of Math., pages 351–389, 2015.
  2. C. Chen. Restricted families of projections and random subspaces. Real Anal. Exchange, 43(2):347–358, 2018.
  3. Small cap decouplings. Geom. Funct. Anal., 30(4):989–1062, 2020.
  4. X. Du and R. Zhang. Sharp L2superscript𝐿2L^{2}italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT estimates of the Schrödinger maximal function in higher dimensions. Ann. of Math. (2), 189(3):837–861, 2019.
  5. K. Fässler and T. Orponen. On restricted families of projections in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. Proc. Lond. Math. Soc., 109(2):353–381, 2014.
  6. Sharp superlevel set estimates for small cap decouplings of the parabola. arXiv preprint arXiv:2107.13139, 2021.
  7. S. Gan and S. Wu. Square function estimates for conical regions. arXiv preprint arXiv:2203.12155, 2022.
  8. A short proof of ℓ2superscriptℓ2\ell^{2}roman_ℓ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT decoupling for the moment curve. Amer. J. Math., 143(6):1983–1998, 2021.
  9. On Falconer’s distance set problem in the plane. Invent. Math., 219(3):779–830, 2020.
  10. Improved decoupling for the parabola. arXiv preprint arXiv:2009.07953, 2020.
  11. Incidence estimates for well spaced tubes. Geom. Funct. Anal., 29(6):1844–1863, 2019.
  12. A sharp square function estimate for the cone in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. Ann. of Math., 192(2):551–581, 2020.
  13. T. L. J. Harris. Improved bounds for restricted projection families via weighted fourier restriction. arXiv preprint arXiv:1911.00615, 2019.
  14. T. L. J. Harris. Restricted families of projections onto planes: the general case of nonvanishing geodesic curvature. arXiv preprint arXiv:2107.14701, 2021.
  15. Hausdorff dimension and non-degenerate families of projections. J. Geom. Anal., 24(4):2020–2034, 2014.
  16. One-dimensional families of projections. Nonlinearity, 21(3):453, 2008.
  17. A Marstrand-type restricted projection theorem in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. arXiv preprint arXiv:1708.04859, 2017.
  18. J. M. Marstrand. Some fundamental geometrical properties of plane sets of fractional dimensions. Proc. Lond. Math. Soc., 3(1):257–302, 1954.
  19. P. Mattila. Hausdorff dimension, orthogonal projections and intersections with planes. Ann. Acad. Sci. Fenn. Ser. AI Math, 1(2):227–244, 1975.
  20. P. Mattila. Geometry of sets and measures in Euclidean spaces, volume 44 of Cambridge Stud. Adv. Math. Cambridge University Press, Cambridge, 1995. Fractals and rectifiability.
  21. D. Oberlin and R. Oberlin. Application of a fourier restriction theorem to certain families of projections in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Geom. Anal., 25(3):1476–1491, 2015.
  22. T. Orponen. Hausdorff dimension estimates for restricted families of projections in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. Adv. Math., 275:147–183, 2015.
  23. T. Orponen and L. Venieri. Improved bounds for restricted families of projections to planes in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. Int. Math. Res. Not. IMRN, 2020(19):5797–5813, 2020.
  24. M. Pramanik and A. Seeger. Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT regularity of averages over curves and bounds for associated maximal operators. Amer. J. Math., 129(1):61–103, 2005.
  25. A Furstenberg-type problem for circles, and a Kaufman-type restricted projection theorem in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. arXiv preprint arXiv:2207.02259, 2022.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube