Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 145 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Exclusive dielectron production in ultraperipheral Pb+Pb collisions at $\sqrt{s_{_\text{NN}}} = 5.02$ TeV with ATLAS (2207.12781v2)

Published 26 Jul 2022 in nucl-ex

Abstract: Exclusive production of dielectron pairs, $\gamma\gamma\rightarrow e+e-$, is studied using $\mathcal{L}\mathrm{int}=1.72\; \mathrm{nb{-1}}$ of data from ultraperipheral collisions of lead nuclei at $\sqrt{s{{\text{NN}}}} = 5.02$ TeV recorded by the ATLAS detector at the LHC. The process of interest proceeds via photon-photon interaction in the strong electromagnetic fields of relativistic lead nuclei. Dielectron production is measured in the fiducial region defined by following requirements: electron transverse momentum, $p{\textrm{T}}{e} > 2.5$ GeV, absolute electron pseudorapidity, $|\eta{e}| < 2.5$, invariant mass of the dielectron system, $m_{ee} > 5$ GeV, and transverse momentum of the dielecton pair, $p_{\textrm{T}}{ee} < 2$ GeV. Differential cross-sections are measured as a function of $m_{ee}$, average $p_{\textrm{T}}{e}$, absolute rapidity of the dielectron system, $|y_{ee}|$, and scattering angle in the dielectron rest frame, $|\cos\theta*|$ in the inclusive sample, and also under the requirement of no activity in the forward direction. The total integrated fiducial cross-section is measured to be $215 \pm 1 \text{(stat.)} {+23}_{-20} \text{(syst.)} \pm 4 \text{(lumi.)}\; \mu$b. Within experimental uncertainties the measured integrated cross-section is in good agreement with the QED predictions from the Monte Carlo programs Starlight and SuperChic, confirming the broad features of the initial photon fluxes. The differential cross-sections show systematic differences with these predictions which are more pronounced at high $|y_{ee}|$ and $|\cos\theta*|$ values.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (49)
  1. “The physics of ultraperipheral collisions at the LHC” In Phys. Rep. 458.1, 2008, pp. 1–171 DOI: https://doi.org/10.1016/j.physrep.2007.12.001
  2. Spencer R. Klein and Peter Steinberg “Photonuclear and Two-photon Interactions at High-Energy Nuclear Colliders” In Ann. Rev. Nucl. Part. Sci. 70, 2020, pp. 323–354 DOI: 10.1146/annurev-nucl-030320-033923
  3. Enrico Fermi “On the theory of collisions between atoms and electrically charged particles” In Electromagnetic probes of fundamental physics. Proceedings, Workshop, Erice, Italy, October 16-21, 2001 2, 1925, pp. 143–158 DOI: 10.1007/BF02961914
  4. E.J. Williams “Nature of the High Energy Particles of Penetrating Radiation and Status of Ionization and Radiation Formulae” In Phys. Rev. 45 American Physical Society, 1934, pp. 729–730 DOI: 10.1103/PhysRev.45.729
  5. G. Breit and John A. Wheeler “Collision of Two Light Quanta” In Phys. Rev. 46 American Physical Society, 1934, pp. 1087–1091 DOI: 10.1103/PhysRev.46.1087
  6. I.A. Pshenichnov “Electromagnetic excitation and fragmentation of ultrarelativistic nuclei” In Phys. Part. Nucl. 42, 2011, pp. 215–250 DOI: 10.1134/S1063779611020067
  7. “Photoneutron cross sections of 208208{}^{208}start_FLOATSUPERSCRIPT 208 end_FLOATSUPERSCRIPTPb and 197197{}^{197}start_FLOATSUPERSCRIPT 197 end_FLOATSUPERSCRIPTAu” In Nucl. Phys. A 159.2, 1970, pp. 561–576 DOI: https://doi.org/10.1016/0375-9474(70)90727-X
  8. ATLAS Collaboration “Measurement of exclusive γ⁢γ→ℓ+⁢ℓ−→𝛾𝛾superscriptℓsuperscriptℓ\gamma\gamma\rightarrow\ell^{+}\ell^{-}italic_γ italic_γ → roman_ℓ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT roman_ℓ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT production in proton-proton collisions at s=7𝑠7\sqrt{s}=7square-root start_ARG italic_s end_ARG = 7 TeV with the ATLAS detector” In Phys. Lett. B 749, 2015, pp. 242–261 DOI: 10.1016/j.physletb.2015.07.069
  9. CMS Collaboration “Search for Exclusive or Semi-Exclusive Photon Pair Production and Observation of Exclusive and Semi-Exclusive Electron Pair Production in p⁢p𝑝𝑝ppitalic_p italic_p Collisions at s=7𝑠7\sqrt{s}=7square-root start_ARG italic_s end_ARG = 7 TeV” In JHEP 11, 2012, pp. 080 DOI: 10.1007/JHEP11(2012)080
  10. CMS Collaboration “Exclusive photon-photon production of muon pairs in proton-proton collisions at s=7𝑠7\sqrt{s}=7square-root start_ARG italic_s end_ARG = 7 TeV” In JHEP 01, 2012, pp. 052 DOI: 10.1007/JHEP01(2012)052
  11. ATLAS Collaboration “Measurement of the exclusive γ⁢γ→μ+⁢μ−→𝛾𝛾superscript𝜇superscript𝜇\gamma\gamma\rightarrow\mu^{+}\mu^{-}italic_γ italic_γ → italic_μ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_μ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT process in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector” In Phys. Lett. B 777, 2018, pp. 303–323 DOI: 10.1016/j.physletb.2017.12.043
  12. ATLAS Collaboration “Observation and Measurement of Forward Proton Scattering in Association with Lepton Pairs Produced via the Photon Fusion Mechanism at ATLAS” In Phys. Rev. Lett. 125.26, 2020, pp. 261801 DOI: 10.1103/PhysRevLett.125.261801
  13. CMS and TOTEM Collaborations “Observation of proton-tagged, central (semi)exclusive production of high-mass lepton pairs in pp collisions at 13 TeV with the CMS-TOTEM precision proton spectrometer” In JHEP 07, 2018, pp. 153 DOI: 10.1007/JHEP07(2018)153
  14. ALICE Collaboration “Charmonium and e+⁢e−superscript𝑒superscript𝑒e^{+}e^{-}italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT pair photoproduction at mid-rapidity in ultra-peripheral Pb-Pb collisions at sN⁢Nsubscript𝑠N𝑁\sqrt{s_{\mathrm{N}N}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_N italic_N end_POSTSUBSCRIPT end_ARG=2.76 TeV” In Eur. Phys. J. C 73.11, 2013, pp. 2617 DOI: 10.1140/epjc/s10052-013-2617-1
  15. STAR Collaboration “Low-pTsubscript𝑝𝑇p_{T}italic_p start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT e+⁢e−superscript𝑒superscript𝑒e^{+}e^{-}italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT pair production in Au+++Au collisions at sN⁢Nsubscript𝑠𝑁𝑁\sqrt{s_{NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 200 GeV and U+++U collisions at sN⁢Nsubscript𝑠𝑁𝑁\sqrt{s_{NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 193 GeV at STAR” In Phys. Rev. Lett. 121.13, 2018, pp. 132301 DOI: 10.1103/PhysRevLett.121.132301
  16. STAR Collaboration “Measurement of e+⁢e−superscript𝑒superscript𝑒e^{+}e^{-}italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT Momentum and Angular Distributions from Linearly Polarized Photon Collisions” In Phys. Rev. Lett. 127.5, 2021, pp. 052302 DOI: 10.1103/PhysRevLett.127.052302
  17. PHENIX Collaboration “Photoproduction of J/Ψ𝐽ΨJ/\Psiitalic_J / roman_Ψ and of high mass e+⁢e−superscript𝑒superscript𝑒e^{+}e^{-}italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT in ultra-peripheral Au+Au collisions at sN⁢N=200subscript𝑠𝑁𝑁200\sqrt{s_{NN}}=200square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 200 GeV” In Phys. Lett. B 679, 2009, pp. 321–329 DOI: 10.1016/j.physletb.2009.07.061
  18. ATLAS Collaboration “Exclusive dimuon production in ultraperipheral Pb+Pb collisions at sNN=5.02subscript𝑠NN5.02\sqrt{s_{\mathrm{NN}}}=5.02square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV with ATLAS” In Phys. Rev. C 104, 2021, pp. 024906 DOI: 10.1103/PhysRevC.104.024906
  19. ATLAS Collaboration “Observation of centrality-dependent acoplanarity for muon pairs produced via two-photon scattering in Pb+Pb collisions at sNN=5.02subscript𝑠NN5.02\sqrt{s_{\mathrm{NN}}}=5.02square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV with the ATLAS detector ” In Phys. Rev. Lett. 121.21, 2018, pp. 212301 DOI: 10.1103/PhysRevLett.121.212301
  20. CMS Collaboration “Observation of Forward Neutron Multiplicity Dependence of Dimuon Acoplanarity in Ultraperipheral Pb-Pb Collisions at sN⁢Nsubscript𝑠𝑁𝑁\sqrt{s_{NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG=5.02  TeV” In Phys. Rev. Lett. 127.12, 2021, pp. 122001 DOI: 10.1103/PhysRevLett.127.122001
  21. “Anomalous electromagnetic moments of τ𝜏\tauitalic_τ lepton in γ⁢γ→τ+⁢τ−→𝛾𝛾superscript𝜏superscript𝜏\gamma\gamma\rightarrow\tau^{+}\tau^{-}italic_γ italic_γ → italic_τ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_τ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT reaction in Pb+Pb collisions at the LHC” In Phys. Lett. B 809, 2020, pp. 135682 DOI: https://doi.org/10.1016/j.physletb.2020.135682
  22. “New physics and tau g−2𝑔2g-2italic_g - 2 using LHC heavy ion collisions” In Phys. Rev. D 102 American Physical Society, 2020, pp. 113008 DOI: 10.1103/PhysRevD.102.113008
  23. ATLAS Collaboration “Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC” In Nature Phys. 13.9, 2017, pp. 852–858 DOI: 10.1038/nphys4208
  24. ATLAS Collaboration “Observation of light-by-light scattering in ultraperipheral Pb+Pb collisions with the ATLAS detector” In Phys. Rev. Lett. 123.5, 2019, pp. 052001 DOI: 10.1103/PhysRevLett.123.052001
  25. ATLAS Collaboration “Measurement of light-by-light scattering and search for axion-like particles with 2.2 nb−11{}^{-1}start_FLOATSUPERSCRIPT - 1 end_FLOATSUPERSCRIPT of Pb+Pb data with the ATLAS detector” In JHEP 11, 2021, pp. 050 DOI: 10.1007/JHEP11(2021)050
  26. CMS Collaboration “Evidence for light-by-light scattering and searches for axion-like particles in ultraperipheral PbPb collisions at sNN=subscript𝑠NNabsent\sqrt{s_{\mathrm{NN}}}=square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV” In Phys. Lett. B 797, 2019, pp. 134826 DOI: 10.1016/j.physletb.2019.134826
  27. ATLAS Collaboration “The ATLAS experiment at the CERN Large Hadron Collider” In JINST 3, 2008, pp. S08003 DOI: 10.1088/1748-0221/3/08/S08003
  28. ATLAS Collaboration “ATLAS Insertable B-Layer Technical Design Report”, 2010 URL: https://cds.cern.ch/record/1291633
  29. ATLAS Collaboration “Performance of the ATLAS Trigger System in 2015” In Eur. Phys. J. C 77.5, 2017, pp. 317 DOI: 10.1140/epjc/s10052-017-4852-3
  30. ATLAS Collaboration “Operation of the ATLAS trigger system in Run 2” In JINST 15, 2020, pp. P10004 DOI: 10.1088/1748-0221/15/10/P10004
  31. ATLAS Collaboration “The ATLAS Collaboration Software and Firmware”, ATL-SOFT-PUB-2021-001, 2021 URL: https://cds.cern.ch/record/2767187
  32. ATLAS Collaboration “ATLAS data quality operations and performance for 2015–2018 data-taking” In JINST 15, 2020, pp. P04003 DOI: 10.1088/1748-0221/15/04/P04003
  33. “STARlight: A Monte Carlo simulation program for ultra-peripheral collisions of relativistic ions” In Comput. Phys. Commun. 212, 2017, pp. 258–268 DOI: 10.1016/j.cpc.2016.10.016
  34. “Glauber Modeling in High-Energy Nuclear Collisions” In Ann. Rev. Nucl. Part. Sci. 57.1, 2007, pp. 205–243 DOI: 10.1146/annurev.nucl.57.090506.123020
  35. L.A. Harland-Lang, V.A. Khoze and M.G. Ryskin “Exclusive LHC physics with heavy ions: SuperChic 3” In Eur. Phys. J. C 79.1, 2019, pp. 39 DOI: 10.1140/epjc/s10052-018-6530-5
  36. “An introduction to PYTHIA 8.2” In Comput. Phys. Commun. 191, 2015, pp. 159–177 DOI: 10.1016/j.cpc.2015.01.024
  37. “A new approach to modelling elastic and inelastic photon-initiated production at the LHC: SuperChic 4” In Eur. Phys. J. C 80.10, 2020, pp. 925 DOI: 10.1140/epjc/s10052-020-08455-0
  38. ATLAS Collaboration “The ATLAS Simulation Infrastructure” In Eur. Phys. J. C 70, 2010, pp. 823–874 DOI: 10.1140/epjc/s10052-010-1429-9
  39. “GEANT4: A Simulation toolkit” In Nucl. Instrum. Meth. A 506, 2003, pp. 250–303 DOI: 10.1016/S0168-9002(03)01368-8
  40. ATLAS Collaboration “Electron and photon performance measurements with the ATLAS detector using the 2015–2017 LHC proton-proton collision data” In JINST 14.12, 2019, pp. P12006 DOI: 10.1088/1748-0221/14/12/P12006
  41. ATLAS Collaboration “Early Inner Detector Tracking Performance in the 2015 Data at s=13⁢TeV𝑠13TeV\sqrt{s}=13\leavevmode\nobreak\ \text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV”, ATL-PHYS-PUB-2015-051, 2015 URL: https://cds.cern.ch/record/2110140
  42. ATLAS Collaboration “Performance of the ATLAS track reconstruction algorithms in dense environments in LHC Run 2” In Eur. Phys. J. C 77, 2017, pp. 673 DOI: 10.1140/epjc/s10052-017-5225-7
  43. “Measurement of the Cross Section for Electromagnetic Dissociation with Neutron Emission in Pb-Pb Collisions at sN⁢Nsubscript𝑠𝑁𝑁\sqrt{s_{NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 2.76 TeV” In Phys. Rev. Lett. 109, 2012, pp. 252302 DOI: 10.1103/PhysRevLett.109.252302
  44. G. D’Agostini “A multidimensional unfolding method based on Bayes’ theorem” In Nucl. Instrum. Meth. A 362.2, 1995, pp. 487–498 DOI: https://doi.org/10.1016/0168-9002(95)00274-X
  45. Tim Adye “Unfolding algorithms and tests using RooUnfold” In Proceedings, 2011 Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding (PHYSTAT 2011), pp. 313–318 DOI: 10.5170/CERN-2011-006.313
  46. ATLAS Collaboration “Luminosity determination in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=8⁢TeV𝑠8TeV\sqrt{s}=8\,\text{TeV}square-root start_ARG italic_s end_ARG = 8 TeV using the ATLAS detector at the LHC” In Eur. Phys. J. C 76, 2016, pp. 653 DOI: 10.1140/epjc/s10052-016-4466-1
  47. G. Avoni “The new LUCID-2 detector for luminosity measurement and monitoring in ATLAS” In JINST 13.07, 2018, pp. P07017 DOI: 10.1088/1748-0221/13/07/P07017
  48. “Discovery of higher-order quantum electrodynamics effect for the vacuum pair production” In JHEP 08, 2021, pp. 083 DOI: 10.1007/JHEP08(2021)083
  49. ATLAS Collaboration “ATLAS Computing Acknowledgements”, ATL-SOFT-PUB-2021-003, 2021 URL: https://cds.cern.ch/record/2776662
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)