Entanglement-enabled symmetry-breaking orders (2207.08828v2)
Abstract: A spontaneous symmetry-breaking order is conventionally described by a tensor-product wave-function of some few-body clusters. We discuss a type of symmetry-breaking orders, dubbed entanglement-enabled symmetry-breaking orders, which cannot be realized by any tensor-product state. Given a symmetry breaking pattern, we propose a criterion to diagnose if the symmetry-breaking order is entanglement-enabled, by examining the compatibility between the symmetries and the tensor-product description. For concreteness, we present an infinite family of exactly solvable gapped models on one-dimensional lattices with nearest-neighbor interactions, whose ground states exhibit entanglement-enabled symmetry-breaking orders from a discrete symmetry breaking. In addition, these ground states have gapless edge modes protected by the unbroken symmetries. We also propose a construction to realize entanglement-enabled symmetry-breaking orders with spontaneously broken continuous symmetries. Under the unbroken symmetries, some of our examples can be viewed as symmetry-protected topological states that are beyond the conventional classifications.
- S.-S. Gong, W. Zhu and D. N. Sheng, Emergent Chiral Spin Liquid: Fractional Quantum Hall Effect in a Kagome Heisenberg Model, Scientific Reports 4, 6317 (2014), 10.1038/srep06317, 1312.4519.
- Su(2n) quantum antiferromagnets with exact c-breaking ground states, Nuclear Physics B 366(3), 467 (1991), https://doi.org/10.1016/0550-3213(91)90027-U.
- N. Shannon, T. Momoi and P. Sindzingre, Nematic Order in Square Lattice Frustrated Ferromagnets, Phys. Rev. Lett. 96(2), 027213 (2006), 10.1103/PhysRevLett.96.027213, cond-mat/0512349.
- Where is the Quantum Spin Nematic?, Phys. Rev. Lett. 130(11), 116701 (2023), 10.1103/PhysRevLett.130.116701, 2209.00010.
- A. J. Beekman, L. Rademaker and J. van Wezel, An Introduction to Spontaneous Symmetry Breaking, SciPost Phys. Lect. Notes p. 11 (2019), 10.21468/SciPostPhysLectNotes.11.
- F. Lu and Y.-M. Lu, Magnon band topology in spin-orbital coupled magnets: classification and application to α𝛼\alphaitalic_α-RuCl33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT, arXiv e-prints arXiv:1807.05232 (2018), 1807.05232.
- Spin-space groups and magnon band topology, Phys. Rev. B 105(6), 064430 (2022), 10.1103/PhysRevB.105.064430, 2103.05656.
- Spin-Group Symmetry in Magnetic Materials with Negligible Spin-Orbit Coupling, Phys. Rev. X 12(2), 021016 (2022), 10.1103/PhysRevX.12.021016, 2103.15723.
- P. A. McClarty, Topological magnons: A review, Annual Review of Condensed Matter Physics 13(1), 171 (2022), 10.1146/annurev-conmatphys-031620-104715.
- An efficient material search for room-temperature topological magnons, Science Advances 9(7), eade7731 (2023), 10.1126/sciadv.ade7731.
- A. Fert, N. Reyren and V. Cros, Magnetic skyrmions: advances in physics and potential applications, Nature Reviews Materials 2(7), 17031 (2017), 10.1038/natrevmats.2017.31, 1712.07236.
- Y. Zhou, Magnetic skyrmions: intriguing physics and new spintronic device concepts, National Science Review 6(2), 210 (2018), 10.1093/nsr/nwy109.
- C. H. Marrows and K. Zeissler, Perspective on skyrmion spintronics, Applied Physics Letters 119(25), 250502 (2021), 10.1063/5.0072735.
- E. Lieb, T. Schultz and D. Mattis, Two soluble models of an antiferromagnetic chain, Annals of Physics 16(3), 407 (1961), https://doi.org/10.1016/0003-4916(61)90115-4.
- M. Oshikawa, Commensurability, Excitation Gap, and Topology in Quantum Many-Particle Systems on a Periodic Lattice, Phys. Rev. Lett. 84(7), 1535 (2000), 10.1103/PhysRevLett.84.1535, cond-mat/9911137.
- M. B. Hastings, Lieb-Schultz-Mattis in higher dimensions, Phys. Rev. B 69(10), 104431 (2004), 10.1103/PhysRevB.69.104431, cond-mat/0305505.
- Lattice Homotopy Constraints on Phases of Quantum Magnets, Phys. Rev. Lett. 119(12), 127202 (2017), 10.1103/PhysRevLett.119.127202, 1703.06882.
- Generalized Lieb-Schultz-Mattis theorem on bosonic symmetry protected topological phases, SciPost Phys. 11, 24 (2021), 10.21468/SciPostPhys.11.2.024.
- Symmetry protection of topological phases in one-dimensional quantum spin systems, Phys. Rev. B 85(7), 075125 (2012), 10.1103/PhysRevB.85.075125, 0909.4059.
- Entanglement spectrum of a topological phase in one dimension, Phys. Rev. B 81(6), 064439 (2010), 10.1103/PhysRevB.81.064439, 0910.1811.
- X. Chen, Z.-C. Gu and X.-G. Wen, Classification of gapped symmetric phases in one-dimensional spin systems, Phys. Rev. B 83(3), 035107 (2011), 10.1103/PhysRevB.83.035107, 1008.3745.
- S. Jiang and Y. Ran, Anyon condensation and a generic tensor-network construction for symmetry-protected topological phases, Phys. Rev. B 95(12), 125107 (2017), 10.1103/PhysRevB.95.125107, 1611.07652.
- R. Thorngren and D. V. Else, Gauging spatial symmetries and the classification of topological crystalline phases, Phys. Rev. X 8, 011040 (2018), 10.1103/PhysRevX.8.011040.
- D. V. Else and R. Thorngren, Topological theory of Lieb-Schultz-Mattis theorems in quantum spin systems, Phys. Rev. B 101(22), 224437 (2020), 10.1103/PhysRevB.101.224437, 1907.08204.
- E. Majorana, Atomi orientati in campo magnetico variabile, Il Nuovo Cimento (1924-1942) 9(2), 43 (1932), 10.1007/BF02960953.
- F. Bloch and I. I. Rabi, Atoms in variable magnetic fields, Rev. Mod. Phys. 17, 237 (1945), 10.1103/RevModPhys.17.237.
- H. Mäkelä and A. Messina, N-qubit states as points on the Bloch sphere, Physica Scripta Volume T 140, 014054 (2010), 10.1088/0031-8949/2010/T140/014054, 0910.0630.
- Translational Symmetry and Microscopic Constraints on Symmetry-Enriched Topological Phases: A View from the Surface, Phys. Rev. X 6(4), 041068 (2016), 10.1103/PhysRevX.6.041068, 1511.02263.
- N. Papanicolaou, Unusual phases in quantum spin-1 systems, Nuclear Physics B 305(3), 367 (1988), https://doi.org/10.1016/0550-3213(88)90073-9.
- Valence bond ground states in isotropic quantum antiferromagnets, Communications in Mathematical Physics 115(3), 477 (1988), 10.1007/BF01218021.
- Featureless quantum insulator on the honeycomb lattice, Phys. Rev. B 94(6), 064432 (2016), 10.1103/PhysRevB.94.064432, 1509.04358.
- Topological characterization of Lieb-Schultz-Mattis constraints and applications to symmetry-enriched quantum criticality, arXiv e-prints arXiv:2111.12097 (2021), 2111.12097.
- A. Keselman and E. Berg, Gapless symmetry-protected topological phase of fermions in one dimension, Phys. Rev. B 91(23), 235309 (2015), 10.1103/PhysRevB.91.235309, 1502.02037.
- Gapless Symmetry-Protected Topological Order, Phys. Rev. X 7(4), 041048 (2017), 10.1103/PhysRevX.7.041048, 1705.01557.
- L. Li, M. Oshikawa and Y. Zheng, Symmetry Protected Topological Criticality: Decorated Defect Construction, Signatures and Stability, arXiv e-prints arXiv:2204.03131 (2022), 2204.03131.
- Z. Ringel and D. L. Kovrizhin, Quantized gravitational responses, the sign problem, and quantum complexity, Sci. Adv. 3(9), e1701758 (2017), 10.1126/sciadv.1701758.
- A. Smith, O. Golan and Z. Ringel, Intrinsic sign problems in topological quantum field theories, Phys. Rev. Research 2(3), 033515 (2020), 10.1103/PhysRevResearch.2.033515, 2005.05343.
- Symmetry-protected sign problem and magic in quantum phases of matter, Quantum 5, 612 (2021), 10.22331/q-2021-12-28-612.
- Probing sign structure using measurement-induced entanglement, Quantum 7, 910 (2023), 10.22331/q-2023-02-02-910.
- Fragile Topology and Wannier Obstructions, Phys. Rev. Lett. 121(12), 126402 (2018), 10.1103/PhysRevLett.121.126402, 1709.06551.
- D. V. Else, H. C. Po and H. Watanabe, Fragile topological phases in interacting systems, Phys. Rev. B 99(12), 125122 (2019), 10.1103/PhysRevB.99.125122, 1809.02128.
- K. Latimer and C. Wang, Correlated fragile topology: A parton approach, Phys. Rev. B 103(4), 045128 (2021), 10.1103/PhysRevB.103.045128, 2007.15605.
- Y.-M. Lu, Lieb-Schultz-Mattis theorems for symmetry protected topological phases, arXiv e-prints arXiv:1705.04691 (2017), 1705.04691.
- Stiefel Liquids: Possible Non-Lagrangian Quantum Criticality from Intertwined Orders, Phys. Rev. X 11(3), 031043 (2021), 10.1103/PhysRevX.11.031043, 2101.07805.
- B. Nachtergaele, The spectral gap for some spin chains with discrete symmetry breaking, Communications in Mathematical Physics 175(3), 565 (1996), 10.1007/BF02099509.
- String Order and Symmetries in Quantum Spin Lattices, Phys. Rev. Lett. 100(16), 167202 (2008), 10.1103/PhysRevLett.100.167202, 0802.0447.
- Matrix product states: Symmetries and two-body Hamiltonians, Phys. Rev. A 79(4), 042308 (2009), 10.1103/PhysRevA.79.042308, 0901.2223.
- H. Watanabe and H. Murayama, Effective Lagrangian for Nonrelativistic Systems, Phys. Rev. X 4(3), 031057 (2014), 10.1103/PhysRevX.4.031057, 1402.7066.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.