Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Word Play for Playing Othello (Reverses) (2207.08766v1)

Published 18 Jul 2022 in cs.LG

Abstract: LLMs like OpenAI's Generative Pre-Trained Transformers (GPT-2/3) capture the long-term correlations needed to generate text in a variety of domains (such as language translators) and recently in gameplay (chess, Go, and checkers). The present research applies both the larger (GPT-3) and smaller (GPT-2) LLMs to explore the complex strategies for the game of Othello (or Reverses). Given the game rules for rapid reversals of fortune, the LLM not only represents a candidate predictor of the next move based on previous game moves but also avoids sparse rewards in gameplay. The LLM automatically captures or emulates championship-level strategies. The fine-tuned GPT-2 model generates Othello games ranging from 13-71% completion, while the larger GPT-3 model reaches 41% of a complete game. Like previous work with chess and Go, these LLMs offer a novel way to generate plausible game archives, particularly for comparing opening moves across a larger sample than humanly possible to explore. A primary contribution of these models magnifies (by two-fold) the previous record for player archives (120,000 human games over 45 years from 1977-2022), thus supplying the research community with more diverse and original strategies for sampling with other reinforcement learning techniques.

Summary

We haven't generated a summary for this paper yet.