Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inference of high quantiles of a heavy-tailed distribution from block data (2207.07988v2)

Published 16 Jul 2022 in math.ST, stat.ME, and stat.TH

Abstract: In this paper we consider the estimation problem for high quantiles of a heavy-tailed distribution from block data when only a few largest values are observed within blocks. We propose estimators for high quantiles and prove that these estimators are asymptotically normal. Furthermore, we employ empirical likelihood method and adjusted empirical likelihood method to constructing the confidence intervals of high quantiles. Through a simulation study we also compare the performance of the normal approximation method and the adjusted empirical likelihood methods in terms of the coverage probability and length of the confidence intervals.

Summary

We haven't generated a summary for this paper yet.