Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Empirical Likelihood based Confidence Regions for first order parameters of a heavy tailed distribution (1008.3229v1)

Published 19 Aug 2010 in math.ST and stat.TH

Abstract: Let $X_1, \ldots, X_n$ be some i.i.d. observations from a heavy tailed distribution $F$, i.e. such that the common distribution of the excesses over a high threshold $u_n$ can be approximated by a Generalized Pareto Distribution $G_{\gamma,\sigma_n}$ with $\gamma >0$. This work is devoted to the problem of finding confidence regions for the couple $(\gamma,\sigma_n)$ : combining the empirical likelihood methodology with estimation equations (close but not identical to the likelihood equations) introduced by J. Zhang (Australian and New Zealand J. Stat n.49(1), 2007), asymptotically valid confidence regions for $(\gamma,\sigma_n)$ are obtained and proved to perform better than Wald-type confidence regions (especially those derived from the asymptotic normality of the maximum likelihood estimators). By profiling out the scale parameter, confidence intervals for the tail index are also derived.

Summary

We haven't generated a summary for this paper yet.